Application Note

Telink TLSR8232 BLE SDK
Developer Handbook

AN-19112700-E1

Version 1.0.0

2019-11-27

Brief:

This document is the developer guide for TLSR8232
BLE SDK 1.3.0.

OLONANOJIWGS @
®

SYIThE]

dOLONANODINGS MNIT3AL

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Published by

Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd,
Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor

All Right Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make
improvements without further notice to this document or any products herein. This
document may contain technical inaccuracies or typographical errors. Telink
Semiconductor disclaims any and all liability for any errors, inaccuracies or
incompleteness contained herein.

Copyright © 2019 Telink Semiconductor (Shanghai) Ltd, Co.

Information:

For further information on the technology, product and business term, please cont
Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

act

AN-19112700-E1 1

Ver.1.0.0

http://www.telink-semi.com/
mailto:telinkcnsales@telink-semi.com
mailto:telinkcnsupport@telink-semi.com

“EM'CO”"”CTORb Telink TLSR8232 BLE SDK Developer Handbook

Revision History

Version 1.0.0 (2019-11-27)

This is the Initial release.

AN-19112700-E1 2 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
Contents

LAY o] o T o 111 o YRS 2

L0} 01 (=T 01 £ PP 3

(070 01 (=] o1 30 T B = PSSR 11

L. SDK OVEIVIBW. ..cciiittiieeeeitiiea ettt e e ettt e e e ettt e e e st e e e s eabbe e e e anbeeeeaanbeeeesansbeeeeanbeeaesaneeeaeanns 14

1.1 Software ArChItECIUIEcooi it e e 14

0t 1 = 1] T o PSP P PP OUPPPPOPPPPPN 15

2 o o T o o oo 8 o R 16

I BN o] o] o= Vi) 1= R 16

1.1 A BLE StaCK ENMIY ...t e e 16

A A o] o [1To I [PPSR 17

R B 11 o > o 17

R =T o o T O PPR 18

1.4.1 BLE SIAVE DEIMOciiiiiiiiiiiiiiee ettt e e e 19

1.4.2 Other DBMIOS ..ccoiiiiieie ettt ettt e st e e e st e e e e nbae e e e ennaeeeeaans 20

2. MCU BASIC MOAUIESoeoiiiieieiiiiee ettt ettt e e et e e e snnae e e e ennneeee s 21

2.1 MCU AUAIESS SPACE ... ueeeeeeiiieee ettt e e etieee e s eetee e e s stee e e s sateeeesaseeeeeeanseeeessneeeesanns 21

2.1.1 MCU Address Space AllOCAtiION..........cceuveiiiiiiiiiiiiee e 21

AN ST R VAN Y/ IEST o = Vo <30 AN | (o Tox= 11 o] o R 21

2.1.2.1 SRAM and Firmware SPaACEcceeeeruerreriiiieeeeiieeeeesieeeeeeiieeeeenes 21

2.1.2.2 list File ANAlySiS DEMO..........ueiiiiiieie e 25

2.1.3 MCU AJAreSS SPACE ACCESS....cereiiuiireeiiiiieeeiiieeeesnieeeessneeeessnseeeessaseeeens 29

2.1.3.1 Peripheral SPace ACCESScccvviiiiiieei e e e 29

2.1.3.2 Flash Space Operation...........ccccuvieiiiieeiiiiiiiieeeee e e essieeeee e e e e 30

2.1.4 SDK Flash Space AllOCALIONccoueiiiiieiiiieiiee e 32

2.1.4.1 Space Allocation of 512kB Flash..........cccccceiiiiiiiiiiiiee, 33

2.1.4.2 Space Allocation of 128KkB Flash..........ccccceeiiiiiiiiiiiiiiiee, 35

2.2 CIOCK MOAUIE ...ttt ettt e e s sne e e e 37

2.2.1 System Clock & System TIMEruuviiiieeeiiiiiieeeee e 37

2.2.2 System TIMEr USAQE.......uuuuiiiieeeiiiiiiiieee e e e e e e e e e e e e e st e e e e e e e e e nnnnannees 39

2.3 GPIO MOAUIE.....coeii it e e e e e e e e e e e e e eeaaes 40

P I R] = [2N T 71 1T o IO 40

2.3.2 GPIO State CONIOLccoieiiiieiiiiee ettt 40

2.3.3 GPIO INItIAlIZALIONeeiiiiiiiiie e 42

AN-19112700-E1 3 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
2.3.4 Configure SWS Pull-up to AvOid MCU EITOIS......cccveeiiiiiciiiieeeee e eeeeieeeens 43

. BLE MOUUIE ...ttt 44
3.1 BLE SDK Software ArChiteCtUIe...........ovii it 44
3.1.1 Standard BLE SDK ArChiteCtUre...........oooueeiiiiiiiee e 44
3.1.2 Telink BLE SDK ArChiteCIUIecoocuiieiiiiiiei et 45
3.1.2.1 Telink BLE CONrOller........ccoiiiiieeiiiiiee et 45

3.1.2.2 5316 BLE SIQVEcoiiiiiiiee ettt 46

3.2 BLE CONLIOIIEE ...ttt et e e e e s 47
3.2.1 BLE Controller INtrodUCHION...........coociiiiiiiiiie i 47
3.2.2 Link Layer State Machingccooviiiiiiiiiiiie e 47
3.2.3 Link Layer State Machine Combined Application...........cccccccvveeeviiivvennnnn. 49
3.2.3.1 Link Layer State Machine Initializationccccccceeeeevvicvvieennnenn. 49

3.2.3.2 1d1€ + ACVEITISING ..vvereeiiiiee et 50

3.2.3.3 Idle + Advertising + ConnSlaveRole.............cccoceveiiiiieniiciiee e, 50

3.2.4 Link Layer TIMiNG SEQUENCEcccoocuvieieiiiieieeeiieee e seieee e steee e sieeee s ssaneeee s 51
3.2.4.1 Timing Sequence in Idle State...........ccccceveeeeiiciiiieiee e 52

3.2.4.2 Timing Sequence in Advertising Stateccccccceeeeeeveiciviieeeeeeenn, 52

3.2.4.3 Timing Sequence in Conn state Slave Role..........ccccccoevivveenenenn. 53

3.2.4.4 Conn State Slave Role Timing Protection..........ccccccceeevieeeeviinenn. 54

3.25 Link Layer TX FIFO & RX FIFO ... 55
3.2.6 Controller HCI EVENT.........eiiiiiiiie et 58
2 T8 A T Y= o SRS 59

3.2.6. 2 HCI LE EVENL ..ot 60

3.2.7 Telink Defined EVENT.........coiiiieie et 62
3.2.7.1BLT_EV_FLAG_ADV....cooiiieeeeeeeeeeeeeeeeeeeeeeeee e 65

3.2.7.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUTccecevvveveeeirennn. 65
3.2.7.3BLT_EV_FLAG_SCAN_RSPoooiiiieeeeeeeeeeeeeeeeeeeeeeeee e 65
3.2.7.4BLT_EV_FLAG_CONNECT ...ocvieieieeeeeeeeeeeeeeeeeeeeeeeeeeee e 65
3.2.7.5BLT_EV_FLAG _TERMINATE ..o 66

3.2.7.6 BLT_EV_FLAG_ENCRYPTION_CONN_ DONE........ccccccvvviinrennnnnns 67

3.2.7.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGEcccceevvveirennnn. 67

3.2.7.8 BLT_EV_FLAG_GPIO_EARLY WAKEUPccceoeiiieieeeeerrenn. 68
3.2.7.9BLT_EV_FLAG_CHN_MAP_REQ ...cocooiiiiiieeeeeeeeeeeeeeeeeeeeen 69

3.2.7.10 BLT_EV_FLAG_CHN_MAP_UPDATEcccooiiiiiieeniee e 69

AN-19112700-E1 4 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
3.2.7.11 BLT_EV_FLAG_CONN_PARA_REQ ...ccccctiiiiiieeiiee e 69
3.2.7.12 BLT_EV_FLAG_CONN_PARA_UPDATE.....c.cceeoteiirerieeenieeene 70
3.2.7.13BLT_EV_FLAG_SUSPEND _ENETRc.cooeiviiieeieereeeseereeesnnes 70
3.2.7.14 BLT_EV_FLAG_SUSPEND_EXITocvvivieeeeeieeeseereeeseeneeesnnen 70
3.2.7.15 BLT_EV_FLAG_PHY_UPDATE.....coiiii it 70

3.2.8 CONLIOIET AP ... e 71
3.2.8.1 Controller API Bref.......ueiiiiiieee e 71
3.2.8.2 APl Return Type ble_StS t.....cooiiiiiiiiii e 71
3.2.8.3 MAC Address Initialization............cccceeeeiiiieie i 71
3.2.8.4 Link Layer State Machine Initializationccccoveeeeriiieneininnnnn. 72
3.2.8.5 DIsS_II_SEtAAVDALAccevveeieiee e 72
3.2.8.6 bls_II_setScanRSPDALA.ccceeeeiiriuriiiiiieee e e 73
3.2.8.7 bIS_II_SEtAAVPAIamMoeviiiiiiiie et 74
3.2.8.8 bls_II_SetAdVENADIEccooiiiiieiiiieeee e 78
3.2.8.9 bls_|I_SetAdVDUIALIONcccoiiiiiieiiiiiee e e 78
3.2.8.10 blc_II_setAdvCustomedChannel.........ccccccceeveiiiiiiiie e 79
3.2.8.11 rf_set_power_level iNUEX........ccooccuiiieiieeeiiciieeeee e e 79
3.2.8.12 bls_lI_terminateConNNECHIONccueeeiiiiiiee e 80
3.2.8.13 Get Connection Parameters........ccccvevvveeeeiiieeee e 81
3.2.8.14 blc_Il_getCurrentStateccueeeeeiiiiee e 81
3.2.8.15 blc_Il_getLateStAVORSSIccccoiiiiiieeeee e 81
3.2.8.16 Whitelist & ReSOIVINGIIST..........ccoviiuiiiiiiiie e 82

3.2.9 2M PHY SUPPOIEAeeiiieiiiee ettt e e e e e e e e e e e e e e e ennnnenees 83

3.2.10 Data Length EXIENSION......ccoiuiiieiiiiiee e 84

TR T 2 O L PP 85

3.3.1 Register L2ZCAP Data Processing FUNCLON...........cccoeviiiiiiiieiiee e, 86

3.3.2 Update Connection Parameters..........cccceeeeviiciiiiieeee e 87
3.3.2.1 Slave Requests for Connection Parameter Update 87
3.3.2.2 Master Responds to Connection Parameter Update Request........ 88
3.3.2.3 Master Updates Connection Parameters in Link Layer................... 90

B ATT & GAT T et s 90

3.4.1 GATT Basic Unit “Attribute” ... 90

3.4.2 Attribute and ATT Tablecooo e 92
B4 2.1 AINUM oo 92

AN-19112700-E1 5 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
B4 2.2 PEIM e 93

3.4.2.3 UUId, UUIALEN ..eeiiiiiiiieeee e 94

3.4.2.4 pAttrValue, attrLen..........c..ovveeeiee e 94

3.4.2.5 Callback FUNCHON W......uuiiiiiiiiiie et 95

3.4.2.6 Callback FUNCHON T ...ccoieiiiiiiiiieee et 97

3.4.2.7 Attribute Table LayOuL..........ccveeeiiiiiiiiiieee e 98

3.4.2.8 ATT Table INItialiZationcccceeiiiiiiiiiiiee e 99

3.4.3 Attribute PDU & GATT APl .o 99

3.4.3.1 Read by Group Type Request, Read by Group Type Response .100

3.4.3.2 Find by Type Value Request, Find by Type Value Response 101

3.4.3.3 Read by Type Request, Read by Type Response..........cccccceeenn... 101

3.4.3.4 Find Information Request, Find Information Response 102

3.4.3.5 Read Request, Read RESPONSE........cccovuviieiiiiiieeiiiieee e 103

3.4.3.6 Read Blob Request, Read Blob ResSponse............cccceeeeviieeeeennnen. 103

3.4.3.7 Exchange MTU Request, Exchange MTU Response.................. 104

3.4.3.8 Write Request, Write RESPONSEuuvvvveeeiiiiiiiieeeee e 105

3.4.3.9 Write COMMEANGcoiiiiiiiiiiiiiee e 106

3.4.3.10 Handle Value Notificationcccceeviiieeeiiiiiiee e 106

3.4.3.11 Handle Value INdication...........ccoocueeeeiiieieeiiiee e 107

3.4.3.12 Handle Value Confirmation...........cccccoevcieeeeiiiiee e 108

ST 1| 109
3.5.1 SMP Parameter Configurationccccceevveeeviiiieeee e ecieeeee e 109
3.5.1.1 DeViCe BONAING....ccccoiiiiiiiiiiiie e e e 109

3.5.1.2 Device OOB data verificationccccoocieeeiiiiiee e 109

3.5.1.3 Secure Connection Pairing (SC)ccveviiiieeiiiiiie e 109
3.5.2ENADIE SMP ... 110
5.3 SMP EVENT .. s 111
3.5.3.1 BLT_EV_FLAG_PAIRING _BEGIN......cocoiieiuiisreeeeeeeererereeeen 111
3.5.3.2BLT_EV_FLAG_PAIRING_ENDccuuciiiiiiiiiiiiiicie e 112

3.5.4 SMP Bonding INfOrMationcceoiieiiiiiiiiiieiee e 112

4. Power Management (PM).......ccii oottt e e e e e e 115
I |V I =T PSR 115
4.1.1 LOW POWEE MOOES......coiiiiiiiieiiiiie ettt 115
4.1.2 Hardware Wakeup SOUICESc.ccouviiiiiiiiiiiee e eeiiieeee e e e e s siiieeeee e e e e s ennes 115

AN-19112700-E1 6 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
4.1.3 Low Power Mode Entry and WaKeupccoovivcuiiiieieeeeeiiiiieee e 117

4.2 BLE Low PowWer ManagemeNnt..........u e s 119
A2 1 PMINIAIE STALe...cciieiiiie e 119
4.2.2 PM in BLE Adv State & COoNN State.........cceeeeiiiieieiiiieee e 120

4.3 BLE PM CONfIQUIALIONuuiiiiieiee et e e e e e e e e e e e s snnnnneeeeeeeeean 120
4.3.1 PM Module INtalZationccueeiiiiiiieiiieee e 120
4.3.2 Set Low Power Modes via “bls_pm_setSuspendMask”......................... 121
4.3.3 bls_pm_SetWakeUPSOUICEcociiiiiiieiiiiie et 121
4.3.4 Working Mechanism of Low Power Managmentccccceeeviieenennnee 122

4.4 “latency_use” Configuration and Calculationccccceeeiiiiiiiiiiie e, 125
I @ 1 =T g £ RS 125
4.5.1 bls_pm_getSystemWakeupTiCK.........cccuverreeiiiiiiiieee e 126
4.5.2 bls_pm_enable AdvMcuUStall............cccceiiiiiiiiiii e 127

4.6 Notes about GPIO WaKEUPuuiiieiiiiie ettt 127
4.6.1 Fail to Enter Suspend/Deepsleep When Wakeup Level is Valid............. 127

4.7 BLE System PM RefEIENCE.....ccccii ittt e e 128
4.8 Timer Wakeup Of APP LAYEIccccuuiiiiiee ettt e e e snaeeeea e 129
5. LOW BAEIY DETECT ...ttt ettt eeee et eeeeeeeeeeeeeeeeesseseeeeeseennnnnnnes 131
5.1 Significance of Low Battery DeteCtcccueeviiiiiiieiiiee e 131
5.2 Implementation of Low Battery Detectcoocueieiiiiiiie e 131
5.2.1 Cautions of Low Battery Detectccccceeviiiiiiiiiiiee e 131
5.2.1.1 MUST Use GPIO Input Channel.........ccccccevviciieieiee e 132

5.2.1.2 MUST Use ADC Differential MOdeccceeriiiieiiiiiiieeieee e 133

5.2.1.3 MUST Use DFIFO for ADC Sampling Valuccccceevivieeeennnennn. 133

5.2.2 Dedicated Low Battery Detect DEMO.........ccooiveeeeiiiiieeeiiiee e 133
5.2.2.1 Initialization of Low Battery Detectcccoccvvvveeeeeeeiiiciiiieeeeeenn 134

5.2.2.2 Low Battery Detect ProCessingccccevveeeiiiiciiiiiieee e eeiiiieeeeee e 134

5.2.2.3 Low Battery Voltage Alarmccccvvveeieeeiiiiiiiieeee e eeeiieeee e 135

LG TR O N I P 137
6.1 Flash Architecture and OTA ProCeUIecoccueveiiiiieeeeiee e 137
6.1.1 Flash Storage ArchiteCturecccuvvveeiee i 137
6.1.2 OTA Update ProCeAUIEcccceii ittt 138
6.1.3 Modify Firmware Size and Boot ADAress..........cccccveeeveiciviieeeee e, 139

6.2 RF Data Proceesing in OTA MOGE........cooiiiiuiiiiiiiiee et 141

AN-19112700-E1 7 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
6.2.1 OTA Processing in Attribute Table on Slave Side..........ccccccceeeevviiivnnnnn. 141

6.2.2 OTA Data Packet FOrmMat..........cocovuiiiiiiiiiiieieiee e 142

6.2.3 RF Transfer Processing on Master Side...........cccovieeeiiieiiiiiieee e, 143

6.2.4 RF Receive Processing on Slave Side ... 146

A G T S = L PP PP P PPPPPPPPPPPPPPPIN 149
A T = Y= L1 O USEERR 149

7.2 Keyscan, Keymap and KEYCOEcceeeeiiiiiuiiiieiee e iecciiiieeee e e esiieeee e e e e e 151

7. 2.1 KBYSCAN....cieiiieieee ettt e ettt e e e e e e e e e e e e e e e e e nnbb e e e e e e e e e e e nnnreneeas 151

7.2.2 Keymap &KD_EVENL......cceiiiiiie e 151

7.3 KBYCOUR ..ottt et e ettt e e st e e e e e ate e e e enbae e e s anreee s 154

7.4 KEYSCAN FIOW ...cceiiiiiiiiiiiieee ettt ettt e e e e e s e e e e e e s e e e e eeeeeeeennnes 156
7.4.1 BasiC KeYSCaAN FIOWuuviiiieiiiiiiieieee e 156

7.4.2 Keyscan Flow Timing Optimization...........cccoviviereiiiieeee e 157

7.5 Deepsleep Wakeup Fast KEYSCANoccuueieiiiiiieiiiiee e 159

7.6 Repeat KEY PrOCESSINGcuuiiiiiiiei i eiiiee e sttt ee ettt et e e s see e e s snaee e e s snnaeee s 161

7.7 StUCK KEY PrOCESSING ..vvvvveiiieeeiiiiiiiieieeeeeessssiiteeeeeeeesessasseeeesaaeessssnnsnneeseaesesnnnnnes 162

7.8 Power Optimization for LoNg K&Y PreSsSuvviiieeeiiiiciiiieeie e esiiieeeee e e e 164

8. LED MaANAGEIMENT......oiiiiiiiiiiiiiiiiiiitiette ettt ettt eee et e e eeeeeeeeeeeeeseseeeeeeeeeeesesseeeeeesnnnnnnnnes 165
8.1 LED Task Related FUNCLONS.........cccoociiiiiiiiiiee e 165

8.2 LED Task Configuration and Management............ccooueeeriiiieeeenieee e 165
8.2.1 LED Event Definitioncooiiiiiiiiiiie et 165

8.2.2 LED EVENE PriOMtYciiceieeeeie e ettt e e e e e e e e e e nnnann e 166

9. DIt SOFWAIE TIMEeiiieiiee et e e e e e e e naeee s 168
9.1 Timer INItIAlIZALION.coiiiiieee e sanee e 168

9.2 TIMer INQUINY PrOCESSING....ccciiuiiieiiiiiie ettt e e e e enaeee e nnnaeee s 168

9.3 Add TIMEE TASK ..cceiieiiieieiiee ettt s e s abe e e e s ranae e s 171

9.4 Delete TIMEI TASKueiiiiiieie e 171

S BT D= 1 0T PO P P OPPPPURRPPPN 171

TR | P 174
LO.L PWM DFIVET .ottt e e e e e e e e e e e e e aaaaaaeeas 174

10. 1.1 PWMid @nd PiN ...ttt e e e eea e 174

10.1.2 PWM CIOCK .ccevieeiiciiiiiieee ettt ettt a e e e e e e e e e e nnnaaeeeaae e 175

10.1.3 PWM CyCle anNd DULYccccoeiiiiiiiiiie ettt ee e 176

10.2.4 PWM REVEIT ...ttt ettt ettt st 177

AN-19112700-E1 8 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
10.1.5 PWM Start @nd STOP ...eeeeeeeeiiiiiiiiiieee e e e e e s e e e e e e s s nneeeeeeeeee s 177
10.2.6 PWM MOGE ..ottt s 177
10.1.7 PWM PUISE NUMDBET......coiiiiiiii e 177
10.1.8 PWM PRASE ...ttt et a e 178
10.1.9 PWM INEEITUPL ..ottt eeeeeeeeeeeeeeeeseeeeeeseeeseeseeneees 178
10.1.10 API for IR DMA FIFO MOGEccuiiiiiiiiiieeiee e 180

10.1.10.1 Configuration of DMA FIFOcccvviiiiiiiiiiiieee e 180
10.1.10.2 Set DMA FIFO BUFfer ..o 181
10.1.10.3 Start and Stop of IR DMA FIFO Mode..........occoeviiiiieeeiiiieeeene 181

L1O.2 IR DBIMO .eeiiiiieieeeiette ettt ettt e e e e s et e et e e e e e s enabb e e e e e e e e e s annnnreeeas 181
10.2.1 PWM MOE SEIECHIONoeiiiiieieiiiiiie ettt 181
10.2.2 DEMO IR PrOtOCOLuvviiiieeeee ettt e e e e e e e e e e e e e e e e 182
10.2.3 IR TimMIiNG DESIGN...ciiiiiiiiiiiiiieie ettt e e e neeeee s 182
10.2.4 IR INItIAliZAONeiiiiiiiie e 185
OB I o | | o 1 S USSR 185

10.2.4.2 IR Hardware Configurationccccccoveecuveieeeeeeesisciieeeeeee e e esnnnns 185

10.2.4.3 IR Variable Initializationccccoiieiiiiiiiiee e 186

10.2.5 FIFO Task Configuration.............ccceeeiiiiieeeiiiiee e e e 186
10.2.5. 1 FIFO Task _data........c.ceeeeeeiiiiiiiiiiieee e 186

10.2.5.2 FIfOTaSK_idl@.....ccieiieiiiieiiieee et 187

10.2.5.3 FifOTASK_FePeat........ccevieeiiiiiiiiiiiie e e e e e e 188

10.2.5.4 FifoTask_repeat*n&FifoTask_idle_repeat*ncccccccvveeerrnnnns 189

10.2.6 Check IR Busy Status in APP Layer........ccccccveeeiiiciieeeeee e eeieeeeae e 189

11. Drivers iN BLE SDKuoeoiiiiiiiieeeee ettt e e et e e e e e 190
11.1 External Capacitor for 24 MHZz Crystal.........ccccoeiiiiiieiiiiiee e 190
11.2 Select 32KHZ CIOCK SOUICES.........eeiiiiiiiii it 190
LLBEMI oo 190
R Tt Y I PP PPPPPPPPPPRE 190
11.3.1.1 Carfier MOUEcoieiiiiiee et e e e nnree e e e snee e e nnes 191

L11.3. 1.2 CD MO ...ccoii ittt e e e 191

L1.3.L.3 TX MOUE coeeeeiee ettt e e e e e e e e e e e e e e nnnes 192

I TR G 1Y o T = SRR 192

11.3.2 EMITESE TOO ...ttt 193
N o o A =T TSR 198

AN-19112700-E1 9 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
12. BLE SPP MOUUIEeeiiiiiiiieitie ettt st st e nneeeneeens 199
12.1 Command and Data Packet FOrmat............ccceeeeiiiiiiiiiiiiiie e 199
12.2 FUNCHION DESCHPLION.eeiiiiiiiiie ettt e e e e e s sneeee e eaes 205
12.2.1 Module Sends Commands and Data...........ccccerviiiereiiiieee i 206

12.2.2 Module RECEIVES DAta..........ueiiiiiiiieiiiiiee et 207

12.3 Power Management Of MOAUIEcooeiiiiiiiee e 209

Y 0] 01T T 1 SRR 210
Appendix 1: crc16 AIGOtRMoiiiiiei e 210

AN-19112700-E1 10 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
Contents of Figures
Figure 1-1 SDK File StrUCIUIEc.ceviiiiiee e e e e 14
FIQUre 1-2 SeIECE lIDFArYovviiii it e e e e e e 18
Figure 1-3 Demos iN BLE SDK.........uuiiiiiieiiiiiiieeee e e e s 19
Figure 2-1 MCU Address Space AlIOCALIONocueeeiiiiiiiiiiieee e 21
Figure 2-2 SRAM and FirMWAare SPACEc..ueiiiiiiieeiiiiiee e eieee e e e eiiee e seeeee e 22
Figure 2-3 Section Distribution in ISt File............ovvieeiiiiiie e, 26
Figure 2-4 Section Address in list File..........occcviiiiiee e 27
Figure 2-5 512kB FLASH Space AllOCAtiONccuveeiiiiiiiiieeee e criieeeee e e 33
Figure 2-6 128kB Flash Space AlIOCAtIONcccueiveiiiiiie e 35
Figure 2-7 System CIOCK & SYStem TIMErccooiuiiieiiiiiee e 37
Figure 3-1 BLE SDK Standard ArchiteCtUre..........cceeeiiecciieieeee e erieeeee e 44
Figure 3-2 HCI Data Transfer Between Host and Controller............ccccccveeeevvcivnnnen. 45
Figure 3-3 5316 hCi ArChItECIUIEuvieeiee e 46
Figure 3-4 Telink BLE Slave ArchiteCtUreooceeviiiiiii e 46
Figure 3-5 State Diagram of Link Layer State Machine in BLE Spec...........cccccee... 48
Figure 3-6 Telink Link Layer State Machingcccoovieeiiiiiiiie e 48
Figure 3-7 1dle + AdVEITISING ...ccooiieiiiiiiee et e e e e e e e e e e nnnaeeees 50
Figure 3-8 BLE Slave LL State........c..uviiiieiieiceeeee e e e 50
Figure 3-9 Timing Sequence in Advertising State..........cccceveiireiiiiiee e 52
Figure 3-10 Timing Sequence in Conn state Slave ROle..........cccoccceeiiiiiee i, 53
Figure 3-11 RX OVEIflOW CASE 1ooeiiiiiiiiiiiiee ettt e e 56
Figure 3-12 RX OVEIIOW CASE 2vviiiieeeii e e ettt e a e e e e e 57
T[0T T B o [Y =T o | R 58
Figure 3-14 Disconnection Complete EVENtcccooiiiiiiiiiiiieie e 59
Figure 3-15 Read Remote Version Information Complete Eventccccovveennen. 59
Figure 3-16 LE Connection Complete EVENtcccooiiiiiiiieiiiieiee e 60
Figure 3-17 LE Advertising RepOrt EVENL............oovvveiiiiiiiiiieeee e 61
Figure 3-18 LE Connection Update Complete Event..........cccccceeevviiiiiieeee e, 61
Figure 3-19 Architecture of Telink Defined Event...........ccccvveeeiii i, 62
Figure 3-20 Connect REQUESE PDUcoiiiiiiiiieiiie e 66
Figure 3-21 LL_CONNECTION_UPDATE_REQ Format in BLE Stack..................... 70
Figure 3-22 Adv Packet Format in BLE Stackccccccvvvivieieei e, 72
Figure 3-23 Advertising Event in BLE StacKcccccoviviiiiiieiei e, 74

AN-19112700-E1 11 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
Figure 3-24 Four Adv Events in BLE Stackccccvviiiiiiiiiiice e 75
Figure 3-25 Connection Para Update Req Format in BLE Stackcccccceeevuvveeeeen. 87
Figure 3-26 BLE Sniffer Packet Sample: conn para Update Request & Response..87
Figure 3-27 conn para update rsp Format in BLE Stackcccoocoieiiiiiiiiiiiineeene 88
Figure 3-28 BLE Sniffer Packet Sample: Il conn update reqccccoveveeeeeeiicivnnnnen. 90
Figure 3-29 GATT Service Containing Attribute Groupcccccevvvciiieeieee e, 91
Figure 3-30 5316 BLE SDK Attribute Tableccccceeviiiiiiee e, 92
Figure 3-31 BLE Sniffer Packet Sample When Master Reads hidinformation.......... 95
Figure 3-32 Write Request in BLE Stackcoooiiiiiiiiiiiii e 96
Figure 3-33 Write Command in BLE Stackcccccoviiiiiiiiiiiiie e 96
Figure 3-34 Service/AttribUte LAYOUL...........ooccuuviieiiee e s e e e e e e eseee e e e e e e 99
Figure 3-35 Read by Group Type Request/Read by Group Type Response.......... 100
Figure 3-36 Find by Type Value Request/Find by Type Value Response 101
Figure 3-37 Read by Type Request/Read by Type Response...........cccccceeevcieeenns 102
Figure 3-38 Find Information Request/Find Information Response............cccccee..... 102
Figure 3-39 Read Request/Read RESPONSE.......ccvveeviiicriiiireee e eiiiieeeee e e e seaneeeeeas 103
Figure 3-40 Read Blob Request/Read Blob RESPONSEcceeeevvicvviiiiieeeee i, 103
Figure 3-41 Exchange MTU Request/Exchange MTU Response.........ccccceecuveeennes 104
Figure 3-42 Write Request/WIite RESPONSEc.veeie i 106
Figure 3-43 Handle Value Notification in BLE SPECc.cccevviiiiieiiiiee e 106
Figure 3-44 Handle Value Indication in BLE SPEC........ccccccvvvveeeiiiiciiiieiee e 107
Figure 3-45 Handle Value Confirmation in BLE SPEeC.......cccccceevviiiviiiiiee e, 108
Figure 3-46 Pairing DiSabIe.........ccuuuiiiiiie e 110
Figure 3-47 Pairing CONN THQOE . .cceiiuiieeeiiiiee e eieee e eiee e siiee et e e s seeeee s enneeeeeenns 111
Figure 3-48 Pairing Peer TrgOEN ... cccuiueeiee e eeiiee et e ettt e e e e e e e eneeeeeenes 111
Figure 3-49 Pairing_Req Sent From Master........cccccovviciiiiieeee e 111
Figure 4-1 Hardware Wakeup Sources for 5316 MCUccccccovvciiiiieeee e, 116
Figure 4-2 PM in Link Layer Idle Statecccuuveeieeee e 120
Figure 4-3 Trigger APP Wakup Tick in AdVanCeccccooiiiiiiiiieiieee e 130
Figure 6-1 5316F512K Flash Storage StruCtUure.........occeevieeeiiee e 137
Figure 6-2 Write Command Format in BLE StacK...........cccccceeeeiiiciiiiieene e, 142
Figure 6-3 Format of OTA Command and Data............ccccceeeeeeeiiicciiieeeee e, 142
Figure 6-4 Master Obtains OTA Attribute Handle via “Read By Type Request”.....143
Figure 6-5 Firmware: Starting Part........ccccoooiuiiiiiiee e 144

AN-19112700-E1 12 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
Figure 6-6 Firmware: ENdiNG Part........ccccooiiiiiiiiiiiee e e e 144
Figure 6-7 Master Sends “OTA start”.......cccccviiiiee e 144
Figure 6-8 Master OTA Dataueieiiiiiie ettt e e e e s saeee e eaes 145
Figure 7-1 ROW/Column Key MAtriXccoiiuuieiiiiiieie et seeee e 149
Figure 7-2 Keycode Processing FUNCLONcovveiiiiiiiiiiiiee e 154
Figure 7-3 Keyscan Time Optimizationcc.uuuerreeeeeiiceiiieeeee e s ssiieeeeee e s e e sneeeeees 159
Figure 10-1 PWM CYCIE & DULYuuviiiiiie et 176
Figure 10-2 PWM INEITUPLcoiiiiiiiie ittt ettt e e s smbe e e s snaeee e eaes 179
Figure 10-3 DMA FIFO Buffer for IR DMA FIFO Mode.......ccooceeiiiiiiiiiiieeeeeeeciee, 180
Figure 10-4 DemO IR ProtOCOL........ccooiiiiiiiiiiiii et 182
Figure 10-5 IR TiMING L....veiiiieeii e s s e e e e e e e e e e s s e e e e e e e e ennnneneees 183
FIgure 10-6 IR TIMING 2....uueieieeei it e s e e e e e e s s seee e e e e e e s s e e e e e e e e ennneeneees 184
Figure 11-1 EMI TESE TOOL.....ciiiiiiiiie ettt e e st snaee e ene 193
Figure 11-2 SeleCt Data BUSooiiiiiiieiiiiie et 193
Figure 11-3 Swire synchronization OPeration.............occueeeiiiieeeeiiieee e 194
Figure 11-4 Set ChanNeloococi oot e e s 194
Figure 11-5 SeleCt RF MOUEcuuiiiiiiee e ceceeeee e a e e e 195
Figure 11-6 Interface After RF Mode Settingccooviieriiiiiiee i 195
Figure 11-7 SeleCt TESt MOUEeiiiiiiiiie et 196
Figure 11-8 Set TX Packet NUMDETccooiiiiiiiiieee e 196
Figure 11-9 TX Mode INtEIfACEuviiiieeieiiiieee e 197
Figure 11-10 Read RX Packet Number and RSSI..........cccccceeei i, 197
Figure 12-1 Module Hardware CONNECLIONccvveeeiiiciiiiieeee e eeieeeee e e e 205
Figure 12-2 Scan ModUIE DEVICEeeieiiiiiie e e e 206
Figure 12-3 Connect MOdUIE DEVICE.........cccuuieiiiiiiiie et 206
Figure 12-4 Module Sending Datacccooccuiiiiiiee e 207
Figure 12-5 Phone RecCeiVINg Data............ccccuiiiiiieeie i 207
Figure 12-6 Phone Sending Data.........ccccooiiiuiiiiiiee e 208
Figure 12-7 Module RecCeiViNg Data..........ccccueeiiiiiiiiiiiiie e 208
Figure 12-8 Connection of Hardware When Low Power is Enabled 209

AN-19112700-E1 13 Ver.1.0.0

.SEMICONDUCTORb

Telink TLSR8232 BLE SDK Developer Handbook

1. SDK Overview

Telink 5316 BLE SDK provides demo code for BLE slave development, based on which
users can develop their own application programs.

Currently 5316 BLE SDK applies to ICs TLSR8232F512 and TLSR8232F128 (5316 and
8232 refer to the same IC, 5316 is the name for Telink internal use, while 8232 is the
name for external use).

1.1 Software Architecture

Software architecture for Telink 5316 BLE SDK includes APP layer and BLE protocol
stack.

Figure 1-1 shows the file structure after the SDK project is imported to Telink IDE, which
mainly contains six top-layer folders: “boot”, "common”, "drivers”, “proj_lib”, "stack”, and
“vendor”.

E ¢/C++ - ble_sdk_ha : 2 o
File Edit Source Refactor Navigate Search Project Run @ Telink Window Help

- ‘0 Q'"lﬂf‘“:‘?‘}gﬂ:@ 8 > | = & 0~ @ %"@@‘0’7"‘ =

[T Project Explorer i3 Sih=4 ‘ o ¥ = 8 | [dmainc [€ app.c &2

4 5§ = ble_sdk_hawk [ble_lt_app_xhawk master 2= void main_loop (void)

“&vﬁ L == -

> [l Includes tick_loop ++;
> [y boot
> [Fy commaon
. © BLE EMLry === === e m oo e e e e e e e e
(@ drivers b1t sdk_main_loop();
> [y projlib
> stack
Er d J* UL BNErY — o= oo oo *f
4 [y vendar #if (BATT_CHECK_ENABLE)
4 (7 5316_ble_remote if{clock_time exceed(lowBattDet_tick, 586*1880)){
. L—'ﬂ app_att.c lowBattDet tick = clock_time();
- battery_power_check(BATTERY_VOL_MIN);
> |k app_configh }
> [} app.c #endif
> [k apph

> L—'"El battery_check.c

+ [} battery_check.h #if (BLT_TEST SOFT_TIMER_ENABLE)

s L—'"El main.c blt soft timer_ process(MAINLOOP_ENTRY);
. #endif
> [reire
> [1 reirh #if(RC_BTN_ENABLE)
2y common proc_keyboard(@, @, @);
. #endif
driver_te
eature_te: #if (BLT_APP_LED EMABLE)
hei device_led_process();
. #endif
module
> [} config.h
> [8) div_mod.S ¥~ POWER MANAEEMENt — === === ===
= b1t
> [} drivers.h ! _pm_proc();

> [h) tl_common.h

|7y bootlink
5 sdk_versiontxt
[&] tl_check_fw.sh

@ tl_check_fw2.exe

#endif //end of__PROJECT_5316_BLE_REMOTE__

B Console =

Figure 1-1 SDK File Structure

<~ boot: This folder contains software bootloader.

< common: This folder contains generic APIs, such as printf and shift operation.

< drivers: This folder contains all the peripheral drivers of 5316, such as ADC, 12C,
SPI, and UART.

<~ proj_lib: This folder contains library files necessary for MCU running, including BLE

stack, RF driver, PM driver, etc. This folder is provided in the form of library files, the
source files, like liblt_5316.a, are not open to users.

AN-19112700-E1

14 Ver.1.0.0

“‘-’M'CO"D"CTORb Telink TLSR8232 BLE SDK Developer Handbook

<~ vendor: This folder contains user APP-layer code, e.g. 5316_ble_remote demo
application. The following four basic files are needed for each new user folder.

1.1.1 main.c

The “main.c” file includes the entry function “main” of the program, system
initialization functions and endless loop “while(1)”. It's not recommended to make any
modification to this file.

int main(void){

blc_pm_select_internal_32k_crystal(); // selectinternal 32k rc as 32k counter
clock source

cpu_wakeup_init(); // basic MCU hardware initialization, negligible to users

clock_init(SYS_CLK_16M Crystal); // clock initialization, users only needs to fill
related parameters accordingly.

gpio_init(); // GPIO initialization, users only need to configure related parameters
in app_config.h

rf_drv_init(RF_MODE_BLE 1M); // RF initialization, negligible to users, only support
BLE 1M

user_init (); // BLE initialization, initialization of the whole system, configured by
users

irg_enable(); // enable global interrupt

while (1) {

#if (MODULE_WATCHDOG_ENABLE)

wd_clear(); //clear watch dog

#tendif
main_loop ();//include BLE Rx/Tx processing, power management and user
tasks
}
}

AN-19112700-E1 15 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

1.1.2 app_config.h

The user configuration file “app_config.h” serves to configure parameters of the whole
system, including parameters related to BLE, GPIO, PM low-power management, and
etc.

Parameter details of each module will be illustrated in following sections.

1.1.3 Application File
“app.c”: User file for system initialization and adding user task Ul.

“app_att.c” of BLE Slave project: configuration files for services and profiles. Based on
Telink Attribute structure, as well as Attributes such as GATT, standard HID, and
proprietary OTA, users can add their own services and profiles as needed.

1.1.4 BLE Stack Entry
There are two entry functions in BLE stack code of Telink BLE SDK.

1) BLE related interrupt processing entry in “irg_handler” function of “main.c” file

“irq_blt_sdk_handlerﬂ

_attribute ram code void irq_handler (void)

irg blt sdk handler ();

2) BLE logic and data processing function entry in application file mainloop
“blt sdk main loop”.
void main loop (void)

{

tick loop ++;

[0/ BLE entxy ///////177770770077777777777

blt sdk main loop();

[111000777777777777777 UL entey ////////777777777777777777777

AN-19112700-E1 16 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

1.2 Applied ICs

TLSR8232F512/ TLSR8232F128: The two ICs share the same IP core, thus their
hardware modules are almost the same except Flash size as shown below.

IC Flash size SRAM size
TLSR8232F512 512kB 16kB
TLSR8232F128 128kB 16kB

1.3 library

SDK 1.2.0 provides two libraries, liblt_5316_512K.a and liblt_5316 128K.a. Providing
two libraries is to save some Flash space for 128k Flash IC, which is at the expense of
removing BLE4.2 DLE features, etc.

It is verified that removing some features of BLE saves little space while loses some
functions of BLE and brings inconvenience to users. Therefore, SDK 1.3.0 reduced its
library to liblt_5316.a only.

If the user uses SDK 1.2.0, he should adjust the library according to Flash size. Figure 1-
2 shows the adjustment method.

AN-19112700-E1 17 Ver.1.0.0

/TELIN
'-‘EM'CO"’”"CT""b Telink TLSR8232 BLE SDK Developer Handbook
72 roperties for ble_sdk_rawic W o o=

type filter text

Settings

f=TE =P 2

-

> Resource
Builders
4 C/C++ Build
Build Variables
Environment
Logging
Tool Chain Editor
i CfC++ General
Git
Linux Toals Path

Project References
Run/Debug Settings

> Task Repository
Telink Loader
WikiText

Configuration: [5316_|>|e_remole [Active]

‘] I Manage Configurations.. i

B Tool Settings |.ﬂ‘ Build Steps

Build Artifact | Binary Parsers | @ Error Parsers|

(& Additional Tools in Toolchain
B3 TC32 CC/Assembler
(# General
@ Paths
(Debugging
a4 [TC32 Compiler
(2 Directories
(% Symbols
(# Warnings
(# Debugging
(2 Optimization
(# Language Standard
@ Miscellaneous
a4 [TC32 C Linker

General

| Libraries

1Y

Objects
a4 [TC32 Create Extended Listing
(# General
4 [y TC32 Create Flash image
(# General
4 B Print Size
(General

Libraries (-)

88 8 4l

Libraries Path (-L)

m

m

ok || Cancel

1.4 Demo

Figure 1-2 Select library

5316 BLE SDK provides multiple BLE demos for users. Each demo code has its specific
hardware. Through running the demo, a user can observe effects directly and modify

demo code for his own application development.

AN-19112700-E1

18

Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

4 = vendor
- = 5316_ble_remote
+ = common
- [= 5316_ble_sample
- = 5316_driver_test
- = 5316_dual_mode
- = 5316 feature_test
- = 5316 _hai
- = 5316 _module
- = link_layer

Figure 1-3 Demos in BLE SDK

1.4.1 BLE Slave Demo

BLE Slave demos and their differences are listed in the table below:

Demo Stack Application MCU function

Controller, communicate
5316 hci BLE controller No with peer MCU hosts via
HCI interface

Application in Host

5316 module BLE controller + host MCU BLE SPP module

5316 remote BLE controller + host Rem_ote_ control Host MCU
application

5316 sample BLE controller + host No Host MCU

5316 dual mode BLE + 2.4G Dual mode Host MCU

5316 hci is a BLE Slave controller. Through its UART-based HCI, 5316 hci can
communicate with other MCU Host, which therefor forms a complete BLE Slave system.

5316 remote/5316 module/5316 sample are all complete BLE Slave stacks. 5316 module
only acts as BLE SPP module to communicate with Host MCU via UART interface.
Usually applications are written in the (peer) MCU with BLE host. 5316 remote is a demo
of BLE remote controller which supports basic functions of remote. It can connect with
standard iOS/Android device or Telink 826x master kma dongle to control the peer. 5316
sample has the same functions with 5316 remote but different hardware. 5316 sample is
used for TLSR8232 development board. It can save the hardware cost for users for that
users can use Telink BLE without purchasing Telink demo RCU.

5316 dual mode supports both BLE and 2.4G. BLE and 2.4G work in a switch mode,
which means 2.4 cannot work when 5316 dual mode works in BLE and vice versa, but
you can switch the two modes in operation.

AN-19112700-E1 19 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

1.4.2 Other Demos

5316 feature test provides demo code for some common features related to BLE. Users
can implement their own functions based on these demos. All features will be introduced
in BLE section.

5316 driver test provides sample code for basic drivers, based on which users can
implement their own driver functions.

AN-19112700-E1 20 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

2. MCU Basic Modules

2.1 MCU Address Space

2.1.1 MCU Address Space Allocation

Telink 5316 MCU supports maximum addressing space of 16M bytes, including 8M-byte
program space from 0 to OX7FFFFF (Please see the datasheet for Flash sizes) and 8M-
byte peripheral space from 0x800000 to Oxffffff. Among the 8M-byte peripheral space,
0x800000 to 0x808000 are for register space, 0x808000 to OxFFFFFF for SRAM space
(Please see the datasheet for SRAM sizes).

Oxffffff
SRAM
Peripheral
Space
0x808000
Register
0x800000
Ox7fffff
Program
space FLASH
Customizable
0x000000

Figure 2-1 MCU Address Space Allocation

2.1.2 SRAM Space Allocation
2.1.2.1 SRAM and Firmware Space

This section provides a further description of SRAM space allocation in MCU address
space.

For 16kB SRAM, the address space range is 0x808000 to 0x80C000.

The figure below shows SRAM and Firmware space allocation.

AN-19112700-E1 21 Ver.1.0.0

/TELIN

e Telink TLSR8232 BLE SDK Developer Handbook
Sram Flash
0x808000 , 0x00000
vector vector \
. power on \
realrancode.size \ ram_code load ram_code /_ramcode_size_|
0x808000+real_ramcode_size \-|—"ested Sram area |,
Cache
2. 25K
0x808900+real_ramcode_size
data + bss
unused area(/‘ ------ Firmware
text /
tack
0x80C000 shac
rodata & data
init value
128K/512K

Figure 2-2 SRAM and Firmware Space
In SDK, files related to SRAM space allocation include “boot.link” and “cstartup_5316.s”.

Firmware in Flash includes vector, ramcode, text, rodata, and data initial value. SRAM
includes vector, ramcode, cache, data, bss, stack and unused area. vector/ramcode in
SRAM is a copy of vector/ramcode in Flash.

1) vectors, ram_code

vectors is a code section of Flash Firmware (the executable bin file generated by
program compiling in SDK), and it corresponds to the assembling file
“cstartup_5316.s”, i.e. the startup code “bootloader”.

ramcode is memory resident code in Flash Firmware, and it corresponds to all
functions with keyword “_attribute_ram_code " in SDK, such as function Flash
erase.

_attribute ram code void flash erase_sector (u32 addr);

In the following two cases, functions should be memory resident:

< Some functions (e.g. Flash operation functions) involve timing multiplex with four
Flash MSPI pins must be memory resident. If these functions are placed in Flash, it
would cause timing conflict and system crash.

AN-19112700-E1 22 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

< Whenever functions resident in RAM are called, it isn’t needed to re-read them from
Flash, thus time will be saved. Therefore, the functions with limited execution time
should be memory resident to increase execution efficiency. In SDK, some functions
related to BLE timing sequence need frequent execution, in order to decrease
execution time and save power consumption, these functions are memory resident.
Users can set a function as memory resident by adding the keyword
“_attribute_ram_code_" as function flash_erase_sector above. After compiling, users
can find this function in ramcode section of list files.
The vector and ramcode in firmware should be loaded to RAM when MCU powers
on. After compiling, the total size of the two parts is “ ramcode_size ", which is a
variable recognizable by compiler. Its calculation is implemented in “boot.link”. As
shown below, the compiling result “_ramcode_size_” equals the code size of vector
and ramcode.
. = 0x0;

.vectors

{

* (.vectors)

* (.vectors.¥*)
}

.ram code

{

* (.ram_code)
(.ram_code.¥)

}

PROVIDE (_ramcode size = .); // Calculate actual ramcode size (vector +
ramcode)

PROVIDE (_ramcode size div 16 = (. + 15) / 16);

PROVIDE (_ramcode size div 256 = (. + 255) / 256);

PROVIDE (_ramcode size div 16 align 256 = ((. + 255) / 256) *
16);
2) cache

cache is high-speed instruction buffer of MCU, and it must be configured as a
section in SRAM. cache size is fixed as 2.25K (0x900), including 256-byte tag and
2048-byte Instructions cache.

Memory resident code can be directly read and executed from memory, however,
only a small part of firmware is memory resident code, and the majority are still in
Flash. According to program locality principle, a part of Flash code can be stored in
cache. Thus, if the code to be executed is in cache, instructions can be directly read
and executed from cache; otherwise the code must be read from Flash to replace
the old code in cache, and then MCU reads and executes instructions from cache.

AN-19112700-E1 23 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3)

4)

As shown in Figure 2-2, the “text” in firmware is the Flash code not placed in SRAM.
According to program locality principle, this part needs to be loaded to cache for
execution.

Though cache size is fixed as 2.25K, its starting address in SRAM is configurable.
To ensure enough space to store vector and ramcode in Flash, this starting address
must exceed “0x808000+_ramcode_size ". As specified by 5316 MCU hardware,
cache starting address must be 256-byte aligned, therefore, the “real_ramcode_size”
is the 256-byte aligned size of “_ramcode_size_”. The starting address of cache
should be:

0x808000 + real_ramcode_size
= 0x808000 + ((_ramcode_size_ +255)/256)* 256
= 0x808000 + _ramcode_size _div_256_* 0x100

The starting address of cache is 256-byte aligned “0x808000 +
_ramcode_size_div_256_* 0x100”, while generally “ ramcode_size_” is not 256-byte
aligned. The actual size of the code loaded from Flash to RAM when power on is

“ ramcode_size_div_256_* 256", which means a part of SRAM space is wasted.

For example: Suppose “_ramcode_size " is 0x780, and the size of code loaded to
SRAM is 0x800, then the code of 0x00000 ~ 0x007ff in Flash firmware is memory
resident, the 128 bytes of 0x808780 ~0x8087ff in SRAM is wasted as non-ramcode
is resident in SRAM.

If “ ramcode_size_” is 0x701, 255 bytes will be wasted; if “*_ramcode_size " is
0x800, no byte will be wasted. The maximum size of wasted SRAM area is 255
bytes, therefore, in program design users need to check list files to view ramcode
occupation and try to avoid serious waste.

Since cache size is fixed as 2.25K (0x900), the ending address of cache should be:

0x808000 + real_ramcode_size + 0x900 = 0x808900 + real_ramcode_size
data/bss

“data” in SRAM serves to store initialized global variables of a program, i.e. global
variables which are non-zero initially. “bss” in SRAM serves to store uninitialized
global variables of a program, i.e. global variables which are zero initially). “data” and
“bss” are introduced here as one section as they are connected — “data” is followed
by “bss”.

cache is followed by “data” and “bss”, The starting address of “data + bss” is the
ending address of cache, i.e. “Ox808900 + _ramcode_size_div_256_* 0x100”. The
code in “boot.link” shown below directly defines the starting address of “data”.

. = 0x808900 + ramcode size div 256 * 0x100;
.data :

The initial value of the initialized global variables in “data” is “data init value” in
Firmware shown in Figure 2-2.

stack / unused area

“stack” in SRAM starts from the highest address 0x80C000 (default 16kB SRAM) or
0x810000 (32kB SRAM) and to low address. Its SP pointer will descend during push
operation, and ascend during pop operation.

AN-19112700-E1 24 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

By default, the size of stack used by SDK library does not exceed 256 bytes.
However, since the size of used stack depends on the deepest stack address, the
stack’s final size is related to users’ upper-layer program design. Any case which
causes deep stack, e.g. a complex recursive function is called, or a large local array
variable is used in a function, will increase the final size of the stack.

When large area of SRAM is used, users need to know the size of the stack used by
program. This cannot be obtained by analyzing list files. Users can only run actual
product application with all of the code which may use deep stack being executed,
then reset MCU and read SRAM space to determine the size of used stack.

“unused area” in SRAM is the space left from deepest stack address and bss ending
address. This area should exist to ensure non-overlap between stack and bss;
otherwise it indicates SRAM size is not enough.

“bss” ending address can be obtained via the list file, thus the maximum size for
stack is determined. Users need to analyze whether this space is enough for stack
usage. Please refer to section 2.1.2.2 for analysis method.

5) text

“text” is a part of Flash firmware. Functions with “_attribute_ram_code_" in firmware
will be compiled as “ram_code”, while other functions without this keyword will be
compiled as “text”.

“text” occupies the maximum space of Firmware, which largely exceeds SRAM size
generally. Therefore, the code needs to be executed after it is loaded into cache by
cache buffer function.

6) rodata/datainit value

”

In Firmware except “vector”, “ram_code” and “text”, there are “rodata” and “data
initial value”.

“rodata” is read-only data in firmware, i.e. variables with keyword “const”, such as
ATT table in Slave:

const attribute t my Attributes[] = ...

Users can see the “my_Attributes” is within the “rodata” by checking the
corresponding list file.

As introduced above, “data” is initialized global variables in Firmware, e.g.:
int testValue = 0x1234;

The compiler will store the initial value “0x1234” in “data initial value”. When the
bootloader (cstartup_826x.s) is executed, this initial value will be copied to memory
address corresponding to “testValue”.

2.1.2.2 list File Analysis Demo

“5316_ble remote” is taken as an example to illustrate SRAM and Flash address space
allocation (please refer to Figure 2-2). Based on the understanding of this demo, users
can analyze SRAM and Flash space allocation of their own programs.

The bin file and list file of this demo are available under the directory “SDK” -> “Demao” ->
“list file analyze”. Information of SRAM space allocation can be analyzed from the
“5316_ ble _remote.Ist” file.

AN-19112700-E1 25 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

All screenshots herein are from files “boot.link”, “cstartup_5316.s”, “56316_ble_remote.hin”
and “5316_ble_remote.lst”.

In the list file, each code of a specific function is called a “section”. The figure below
shows section distribution in the list file “5316_ble_remote.Ist”.

Sections:
Idx Name Size VMA LMA File off
8 .vectors 00000166 ©0EEoBE 0000000 066388
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .ram_code 0000168c ©PEBP1ee 00000100 066631680
CONTENTS, ALLOC, LOAD, READONLY, CODE
text eoecef3e o©eeel7o%e eeeel7oe eeees7oe

CONTENTS, ALLOC, LOAD, READONLY, CODE
.rodata e0000a64 0©OeeB6CE ©0PP36ce 00elecce
CONTENTS, ALLOC, LOAD, READONLY, DATA
.data 20000194 0©080a3lee e0ee9124 00el2lee
CONTENTS, ALLOC, LOAD, DATA
.bss 00008Cc98 0©0P8Pa2ad 0©00e92c4 08012294
ALLOC

Figure 2-3 Section Distribution in list File

Below lists the sections in the list file. Detailed introductions are followed.

1) vectors: start from Flash 0, size is 0x100.

2) ram_code: start from Flash 0x100, size is 0x168c.

3) text: start from Flash 0x1790, size is 0x6f30.

4) rodata: start from Flash 0x86¢0, size is 0xa64.

5) data: start from SRAM 0x80a100, size is 0x194.

6) Dbss: start from SRAM 0x80a2a0, size is 0xc98. By calculation “bss” ending address
is 0x80a2a0 + 0xc98 = 0x80af38. The remaining space size following the “bss” is
0x80c000 — 0x80af38 = 0x10c8 = 4296 bytes, from which minus 256 bytes for stack,
the remaining 4040 bytes are unused.

AN-19112700-E1 26 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

fe: 46c0 tnop ; (mov r8, r8)
Disassembly of .ram_code:

00000100 <irqg_handler>:
1788: 0080abcc taddeq sl, ro, ip, as

Disassembly of .text:

00001790 <__ _modsi3>:
86be: 46¢cO tnop ; (mov r8,

Disassembly of .rodata:

000086¢c0 <C.1.4456>:
9120: 20010000 tandge ro, rl, re

Disassembly of .data:

0080al00 <_start_data_>:
80a290: 000080 tandeq ro, re, re, 1ls

Disassembly of .bss:

0080a2a® <_start_bss_»>:
80af34: 00000000 tandeq re, ro, re

Disassembly of .comment:

Figure 2-4 Section Address in list File

Figure 2-4 shows the starting/ending addresses of various sections by searching
“section” in the list file. From this figure and Figure 2-3 Section Distribution in list File, the
analysis is shown as below:

1) vector

“vector” is the bootloader corresponding to the assembly file “startup_5316.s”. As shown
in the list file, the size of this section is 256 bytes with starting address in Flash being 0,
ending address Oxff. After power on it is loaded to SRAM and the corresponding address
in SRAM is 0x808000 ~ 0x8080ff.

2) ram_code

“ram_code” section contains 0x168c bytes with starting address being 0x100, ending
address 0x178c. Since “_ramcode_size " is 0x178c, 256-byte aligned
“real_ramcode_size” is 0x1800, actually 116 bytes (0x38) in SRAM are wasted.

AN-19112700-E1 27 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3) cache
The starting address and ending address of cache are:
0x808000 + real_ramcode_size ~ 0x808900 + real_ramcode_size
0x809800 ~ 0x80a100

cache related information is not shown in the list file.
4) text

“text” section contains 0x6f30 bytes (size = 0x86¢c0 — 0x1790) with starting address being
0x1790 (ending address of “ram_code”), ending address 0x86¢c0, the same as what
shown in Figure 2-3 above.

5) rodata

The starting address of “rodata” is the ending address of “text” 0x86c0 and the ending
address is 0x9124.

As shown in “5316_ble_remote.bin”, the actual bin size is 0x92c4. According to the
analysis above, the remaining firmware space 0x9124 ~ 0x92c4 is actually “data init
value”, i.e. initial values of initialized global variables in Firmware. “data init value” is not a
specific section in the list file. Users can search the keyword “_dstored_” and find the
value “0x9124” which is the starting address of “data init value”.

00009124 g *ABS* 00000000 _dstored_

The “_dstored_” definition in the “boot.link is shown below. It tells the compiler that initial
values of initialized global variables in the “data” section are all stored in “_dstored_" of
Firmware.

. = 0x808900 + ramcode size div 256 * 0x100;
.data :
AT (_dstored)
{

.= (. + 3) /7 4)*4);
PROVIDE (_start data = .);
*(.data) ;
(.data.);

o= (0 + 3) /4
PROVIDE (_end data = .);

}
6) data

The starting address of “data” is the ending address of cache 0x80a100. The size of
“data” shown in Figure 2-3 is 0x194.

The final variable in “data” section is “ota_firmware_size k”, a int variable. Its address is
0x80a290 and its size is 4-byte. Therefore the ending address of “data” is 0x80a294, and
the size of “data” is 0x80a294 - 0x80a100 = 0x194, as shown in Figure 2-3.

AN-19112700-E1 28 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

7) bss

“data” is followed by “bss”. Since the first array “_start_bss " should be 16-byte aligned,
the “bss” section starts from 0x80a2a0, and its size is 0xc98, as shown in Figure 2-3.

The final variable in “bss” is “blt_ota_start_tick”, a int variable. Its address is 0x80af34,
and its size is 4-byte. Therefore the ending address of “bss” is 0x80af38, and the size of
the “bss” is 0x80af38 - 0x80a2a0 = 0xc98, as shown in Figure 2-3.

By calculation the remaining SRAM space size is 0x80c000 — 0x80af38 = 0x10c8 = 4296
bytes, from which minus 256 bytes for stack, the remaining 4040 bytes are unused.

2.1.3 MCU Address Space Access

MCU address space 0x000000 ~ Oxffffff can be accessed in the program in the following
two cases.

2.1.3.1 Peripheral Space Access
The peripheral space (register & SRAM) is directly accessed (read/write) via pointer.
u8 x =*(volatile u8*)0x800066; // read register 0x66
(volatile u8)0x800066 = 0x26; // write register 0x66
u32 y = *(volatile u32*)0x808000; // read SRAM 0x8000-0x8003
(volatile u32)0x808000 = 0x12345678; // write SRAM 0x8000-0x8003

", ” i,

In the program, functions including “write_reg8”, “write_reg16”, “write_reg32”,
“read_reg8”, “read_reg16” and “read_reg32”, which implement pointer operation, are
used to write or read the peripheral space correspondingly. Please see
“drivers/5316/bsp.h” for details.

Please note that for operations such as write_reg8 (0x8000), read_reg16 (0x8000) ,
whose definitions are shown as below, the base address “0x800000” is automatically
added (address line BIT(23) is 1) to ensure the access space is Register/SRAM rather
than Flash.

#define REG_BASE_ADDR 0x800000

#define write reg8(addr,v) U8 SET((addr + REG_BASE ADDR), V)
#define write regl6 (addr,v) Ul6_SET((addr + REG_BASE ADDR),V)
#define write reg32(addr,v) U32 SET((addr + REG BASE ADDR),V)
#define read reg8(addr) U8 GET((addr + REG_BASE ADDR))
#define read regl6(addr) Ul6 GET((addr + REG_BASE ADDR))
#define read reg32(addr) U32 GET((addr + REG _BASE ADDR))

Please pay attention to one thing of memory alignment: If a pointer pointing to 2 bytes/4
bytes is used to access the peripheral space, make sure the address is 2-byte/4-byte
aligned to avoid data read/write error. The following shows two incorrect formats:

ulé x =*(volatile u16*)0x808001; // 0x808001 is not 2-byte aligned
(volatile u32)0x808005 = 0x12345678; // 0x808005 is not 4-byte aligned

AN-19112700-E1 29 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The correct formats should be:
ulé x=*(volatile u16*)0x808000; // 0x808000 is 2-byte aligned
(volatile u32)0x808004 = 0x12345678; // 0x808004 is 4-byte aligned

2.1.3.2 Flash Space Operation

Reading or writing Flash space is implemented via functions “flash_read_page” and
“flash_write_page”. Code of Flash erasing is available in “drivers/5316/flash.c” and
“flash.h”.

1) Flash read/write

Functions “flash_read_page” and “flash_write_page” serve to read or write Flash space
correspondingly.

void flash_read_page(u32 addr, u32 len, u8 *buf);

void flash_write_page(u32 addr, u32 len, u8 *buf)
Flash read operation via “flash_read_page”:

void flash_read_page(u32 addr, u32 len, u8 *buf);

u8 data[6] ={0 };

flash_read_page(0x11000, 6, data); // read 6 bytes starting from 0x11000 in Flash
into a data array

Flash write via “flash_write_page”:
flash_write_page(u32 addr, u32 len, u8 *buf);
u8 data[6] = {Ox11,0x22,0x33,0x44,0x55,0x66 };

flash_write_page(0x12000, 6, data); // write 6-byte data “0x665544332211” into
Flash starting from 0x12000

“flash_write_page” accesses pages in Flash. The maximum “len” for operations of
“flash_write_page” is 256 bytes, the size of one page. This function is not allowed to write
Flash space across two or more pages.

< If the “addr” is the starting address of one page, the “len” cannot exceed 256 bytes.
flash_write_page (0x12000, 256, data) is correct. flash_write_page (0x12000, 257,
data) is incorrect as the final byte does not belong to the page where 0x12000 is,
and the write will fail.

< If the “addr” is not the starting address of one page, the “len” cannot exceed the end
address of the page - “addr” + 1. For example, flash_write_page (0x120f0, 20, data)
is incorrect as the first 16 bytes are in page of 0x12000 while the last 4 bytes are in
page of 0x12100.

“flash_read_page” can read data more than 256 bytes once. It's allowed to read Flash
area across pages.

2) Flash erase operation
Use function “flash_erase_sector” to erase Flash.

void flash_erase_sector(u32 addr);

AN-19112700-E1 30 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

One sector contains 4096 bytes, e.g. 0x13000 ~0x13fff. The “addr” must be the starting
address of one sector, and every time the function erases a complete sector.

Erasing a sector takes some time. In the case of a 16M system clock, it takes about
30~100ms or even longer time to erase a sector.

3) Influence of flash access/erasing operations to system interrupt

System interrupt must be disabled via “irq_disable()” when flash_read_page,
flash_write_page or flash_erase_sector is executed, and then restored via “irq_restore()”
after operations are finished. This will ensure integrity and continuity of Flash MSPI
timing operation, and avoid hardware resource reentry due to MSPI bus lines invoking by
Flash operation in interrupt.

Since timing sequence of BLE SDK RF packet transmission and reception is always
controlled by interrupt, when system interrupt is disabled during Flash operation, it may
ruin the timing sequence, thus MCU fails to respond in time.

The influence to BLE interrupt by execution time of the Flash access function is almost
negligible; howerver, the “len” in the function will determine the time to access the Flash
area, it's highly recommended not to set the “len” as large value in BLE connection state
during mainloop.

It takes tens of milliseconds to hundreds of milliseconds to execute the
“flash_erase_sector” function. Therefore, during mainloop of main program, once MCU
enters BLE connection state, try not to invoke the “flash_erase_sector” to avoid
disconnection. If it's inevitable to erase Flash during BLE connection, BLE timing
sequence protection as introduced in section 3.2.4.4 Conn State Slave Role Timing
Protection should be adopted.

4) Read Flash via pointer

Firmware of 5316 BLE SDK is stored in Flash. When the firmware is running, only former
part of the code in Flash is stored and executed as memory resident code in RAM, and
the majority will be transferred to the high-speed “cache” of RAM from Flash when
needed. MCU will automatically control internal MSPI hardware module to read Flash.

Flash can also be read via pointer. When data are accessed by MCU system bus, if the
data address is not in the memory resident ramcode, system bus will automatically switch
to MSPI, and read data from Flash by using MSCN, MCLK, MSDI and MSDO lines to
operate SPI timing sequence.

The following shows three examples:
ulé x=*(volatile u16*)0x10000; // read two bytes from Flash 0x10000

u8 data[16];

memcpy(data, 0x20000, 16); /l read 16 bytes from Flash 0x20000 and copy to
data

if(lmemcmp(data, 0x30000, 16)){ // read 16 bytes from Flash 0x30000 and compare
with data

In user_init, when calibration values are read from Flash and set to corresponding
registers, the reading is implemented via pointer. Please refer to the function below in
SDK:

AN-19112700-E1 31 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

static inline void blc_app_loadCustomizedParameters(void);

Flash can be read by using function “flash_read_page” or pointer, but it can be written via
function “flash_write_page” only. Pointer does not support Flash writing operation.

Please note that when Flash is read by pointer, since data read by system bus will be
buffered in cache, MCU may directly use the buffered data as the result of the new
reading operation if the data is not covered by other data and new request of accessing
the data is received. If a user’s code is shown as below:

u8 result;

result = *(volatile u16*)0x40000; // read Flash via pointer
u8 data = Ox5A;

flash_write_page(0x40000, 1, &data);

result = *(volatile u16*)0x40000; // read Flash via pointer

if(result = OX5A){ }

The original data in Flash 0x40000 is 0xff; the result of the first reading is 0xff; then Ox5A
is written into Flash 0x40000 by the following writing; in theory, the result of the second
reading should be the new value “Ox5A”, but the actual result is still the old data buffered
in the cache, i.e. “Oxff". Therefore, in the case of multiple reading of the same address, if
its value will be modified, use the API “flash_read_page” rather than pointer to ensure the
result of reading is the new value written into this address rather than the old value in the
cache.

u8 result;

flash_read_page(0x40000, 1, &result); // read Flash via API
u8 data = Ox5A;

flash_write_page(0x40000, 1, &data);
flash_read_page(0x40000, 1, &result); // read Flash via API

if(result != OX5A){ }

2.1.4 SDK Flash Space Allocation

Flash uses a sector (4K bytes) as the basic unit to store information as Flash erases
information based on a sector. (Erase function “flash_erase_sector”). In theory,
information of the same type should be stored in a sector, and information of different
types should be stored in different sectors to avoid unexpected erasing. It's
recommended to follow this rule to store customized information in Flash.

Two allocation methods of Flash space are supported according to actual Flash sizes:
one is for 512kB Flash (TLSR8232F512), the other is for 128kB Flash (TLSR8232F128).

AN-19112700-E1 32 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

2.1.4.1 Space Allocation of 512kB Flash

0x80000
User Data
Area
0x78000
Customed value
0x77000
MAC address
0x76000
Pair&Sec info
0x74000
User Data
Area
0x40000
OTA New bin
storage Area
0x20000
0ld Firmware
bin
0x00000

Figure 2-5 512kB FLASH Space Allocation

The figure above shows the default FLASH space allocation for TLSR8232F512 IC.
Corresponding interfaces are provided to users for modifying Flash space allocation. The
following introduces the default address space allocation and corresponding interfaces.

1. The sector from 0x76000 to Ox76FFF serves to store MAC address. Actually the 6-
byte MAC address is stored in Flash area from 0x76000 (for lower byte of MAC
address) to 0x76005 (for higher byte of MAC address). For example, if “0x11 0x22
0x33 0x44 0x55 0x66” are stored in FLASH 0x76000 to 0x76005, the MAC address
is “0x665544332211”.

Corresponding to SDK, MAC address of actual product will be downloaded into its
Flash starting from 0x76000 by Telink jig system. If users want to modify this starting

AN-19112700-E1 33 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

address to store MAC address, please ensure the consistency. The “user_init”
function in the SDK will read MAC address from Flash area starting from the macro
“CFG_ADR_MAC”. This macro can be modified in the “drivers/5316/flash.h”.

#ifndef CFG_ADR MAC
#define CFG_ADR MAC 0x76000
#endif

The sector from 0x77000 to Ox77fff serves store customized calibration information

for Telink MCU. Only this sector does not follow the rule that storing information of

different types into different sectors; the 4096 bytes in this sector are divided into 64

units with 64 bytes each, and each unit stores one type of calibration information.

Since calibration information is burned to corresponding addresses by jig, it can be

stored in the same sector; when firmware is running, the calibration information is

read only and not allowed to be written or erased.

1) The first 64-byte unit serves to store frequency offset calibration information.
Actually this calibration value has only 1 byte and is stored in 0x77000.

2) The second 64-byte unit serves to store calibration value of TP value which has
2 bytes (TPO, TP1) and is stored in 0x77040 and 0x77041 correspondingly.

3) The third 64-byte unit serves to store capacitance calibration value of external
32kHz crystal.

Corresponding to SDK, actual calibration values will be burned into the addresses above
by Telink jig system. If users want to modify the address, please ensure the burning
address of Telink jig system is also modified correspondingly . In “user_init” function of
SDK, “blc_app_loadCustomizedParameters()” function will read calibration values from
these addresses starting from the following macros. These macros can be modified in the
“drivers/5316/flash.h”.

AR

#ifndef CUST CAP INFO ADDR

#define CUST CAP INFO ADDR 0x77000
#endif

#ifndef CUST TP INFO ADDR

#define CUST TP INFO ADDR 0x77040
#endif

The two sectors 0x74000 ~ 0x75FFF are occupied by BLE stack system, and the
8kB area is used to store pairing and security information. Users can modify the
starting address of this 8kB area by calling the function below:
stack/ble/ble_smp.h
void bls_smp_configParingSecuritylnfoStorageAddr (int addr);

The 256kB area 0x00000 ~ Ox3FFFF is used as program space by default:

The first 128kB area 0x00000 ~ Ox1FFFF is used as storage space for old firmware.
The second 128kB area 0x20000 ~ Ox3FFFF is used as storage space for OTA new
firmware, which means the maximum space for Firmware is 128kB.

AN-19112700-E1 34 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

<>

If firmware doesn’t need to occupy the whole 128kB space 0x00000~0x3FFFF, users
can use corresponding API to modify the allocation as needed, thus the remaining
space can be used as data storage space. Please refer to OTA section for details.
The remaining Flash space is all used as user data area (storage space for user
data).

2.1.4.2 Space Allocation of 128kB Flash

Ox 20000+ 020000+
o MAC address+
Ox1f000+
System use+ Customed value+
Ox1e000+
Area(16K} Pair&Sec info+
Ox1cO00+ Ox1cO00+
+
+
. OTA New bin Storage Area+
+
User Area+ 0x10000-
User Data Area+
OxOcO0
+
Old Firmware bin+
Ox00000+ Ox00000+

Figure 2-6 128kB Flash Space Allocation

The figure above shows the default space allocation for the 128kB Flash of
TLSR8232F128. Users can choose different allocation methods as needed. Please see
OTA section for allocation methods.

The space allocation shown above is the default allocation method of 128K chip. Actually
all the space allocations provide users corresponding interfaces for modification, by
which users can modify Flash space allocation as needed. The following introduces the
default space allocation and corresponding interfaces.

1.

The sector 0x1FO00~0x1FFFF serves to store MAC address. Actually the 6-byte
MAC address is stored in area from Ox1F000 (for lower byte of MAC address) to
0x1F005 (for higher byte of MAC address). For example, if “Ox11 0x22 0x33 0x44
0x55 0x66” are stored in FLASH 0x1F000~0x1F005, the MAC address is
“Ox665544332211".

Corresponding to SDK, MAC address of actual products will be burned into its Flash
starting from Ox1F000 by Telink jig system. If users want to modify this starting

AN-19112700-E1 35 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

address to store MAC address, please ensure the burning addresses of Telink jig
system are also modified correspondingly. The “user_init” function in the SDK will
read MAC address from Flash area starting from the macro “CFG_ADR_MAC?”. This
macro can be modified in “drivers/5316/flash.h”.

#ifndef CFG_ADR MAC
#define CFG_ADR MAC 0x1F000
#endif

2. The sector Ox1EO00~O0x1EFFF serves to store customized calibration information for
Telink MCU. Only this sector does not follow the rule that storing information of
different types into different sectors; the 4096 bytes in this sector are divided into 64
units with 64 bytes each, and each unit stores one type of calibration information.
Since calibration information is burned to corresponding addresses by jig, it can be
stored in the same sector; when firmware is running, these calibration information is
read only and not allowed to be written or erased.

1) The first 64-byte unit serves to store frequency offset calibration information.
Actually this calibration value has only 1 byte and is stored in 0x1EQOQO.

2) The second 64-byte unit serves to store calibration value of TP value. Actually
this calibration value has only 2 bytes (TPO, TP1) and stored in 0x1E040 and
0x1E041 correspondingly.

Corresponding to SDK, actual calibration values will be burned into the addresses

above by Telink jig system. If users want to modify the address, please ensure the

burning address of Telink jig system is also modified correspondingly. In “user_init”
function of SDK, “blc_app_loadCustomizedParameters()” function will read
calibration values from the addresses starting from the following macros. These
macros can be modified in the “drivers/5316/flash.h”.

#ifndef CUST_CAP_INFO_ADDR

#define CUST CAP INFO ADDR 0x1E000
#endif

#ifndef CUST TP INFO ADDR

#define CUST TP INFO ADDR 0x1E040
#endif

3. The two sectors 0x1C000 ~ Ox1DFFF are occupied by BLE stack system, and the
8kB area is used to store pairing and security information. Users can modify the
starting address of the 8K area by calling the function below:

void bls_smp_configParingSecuritylnfoStorageAddr (int addr);

4. The remaining 112kB space 0x00000 ~ Ox1bFFF are configurable area for user code
and user data. The default allocation is as below. The 48kB area 0x00000 ~OxOBFFF
is used as storage space for old firmware. The 48kB area 0x10000 ~Ox1BFFF is

AN-19112700-E1 36 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

used as storage space for OTA new firmware. The 16kB area OxC000 ~ 0x10000 is
used as storage space for user data.

If the default space allocation does not meet users’ requirements, e.g. firmware size
exceeds 48kB, or user data need more than 16kB space, corresponding APIs are
provided to modify allocation as needed. Please refer to section 6.1.3 for details.

2.2 Clock Module
2.2.1 System Clock & System Timer

System clock is the clock reference for MCU firmware running.

System timer, a read-only timer, is formerly used as time reference for BLE timing. For
some reasons, currently we use system timer with timerQ to provide time reference for
BLE timing. Therefore, users cannot use timer0 for other functions.

For last generation IC of Telink (826x), the clock for system timer is the system clock,
while for TLSR8232, as the figure shown below, though system timer has multiple
sources SDK divides the external 24MHz crystal oscillator by 2/3 and obtains 16M clock
which will not change with the change of system clock.

~.
T
32kHz RC N— ~
Oscillator = é 32k clk
o
32kHz Ci I ! ™
¢ Crysts Pad_32k—m| - 32kHz QDEC._clk
Oscillator //
Analog
ox2d[7] Sys QDEC_clk | QDEC
g Digital
~ 0x65[0]=1 (enable 32k QDEC_clk)
—— Doubler —48M—00} 23 11 0x65[5]=1 (enable Sys QDEC_clk)
Divider | Hs =
divider 2 <
=]
=
o1 3 lems o1| 3§
24MHz RC = = > 5 hsys k>
Oscillator = & £
5)
10| 2
Divider >
HS
Digital divider 1
24MHz Crystal Ty 10/11 0x66(4:0]
" Pai —t
Oscillator - // > =
00 32kHz
Digital Digital jS\,rs Sys_timer_clk
{0x70[0], Ox66(71} oxe6[e:5] SYetimer_clk
-
2/3 16MHz System Timer
- ———Sys_timer_clk——m»
Divider

Digital
0x64[0]=1 (enable 16M Sys_timer_clk
and Sys Sys_timer_clk)
0x64[6]=1 (enable 32k Sys_timer_clk)

Figure 2-7 System Clock & System Timer

From the figure above, system clock can obtain 16MHz/32MHz/48MHz and other clocks
in the way that doubling the external 24MHz crystal oscillator to 48M and then dividing
frequency, we call these clocks crystal clocks(such as 16M crystal system clock, 32M
crystal system clock); system clock can also obtain 16MHz/32MHz/48MHz and other
clocks by processing internal 24MHz RC Oscillator, we call these clocks RC clocks (BLE
SDK does not support RC clock.)

AN-19112700-E1 37 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

In BLE SDK, we recommend using crystal clock.

In initialization, call API below to configure system clock and choose the corresponding
clock from the definition of enumeration variable SYS CLK_TYPEDEF:

void clock_init(SYS_CLK_TYPEDEF SYS_CLK)

As 5316 System Timer is different from system clock, users need to know whether the
clock of each MCU hardware module is derived from system clock or System Timer.
Taking a system clock of 32MHz crystal for example, the system clock is 32MHz while
System Timer is 16MHz.

The definitions of system clock and S, mS, uS in “app_config.h” are as follows:
#define CLOCK_SYS_CLOCK_HZ 16000000
enum{

CLOCK_SYS_CLOCK_1S

CLOCK_SYS_CLOCK_HZ,

CLOCK_SYS_CLOCK_1MS = (CLOCK_SYS_CLOCK_1S / 1008),

CLOCK_SYS_CLOCK_1US
}s

All the clock sources are the hardware modules of system clock. When setting the clock
for a module, only CLOCK_SYS_CLOCK_HZ, CLOCK_SYS_CLOCK_1S can be used.
In other words, if a user see that the above definitions are used for clock setting, it means
the clock source of this module is system clock.

(CLOCK_SYS_CLOCK_1S / 1000000),

If the setting of PWM cycle and duty ratio in PWM driver is as follows, it means the clock
source of PWM is system clock.

pwm_set_cycle_and_duty(PwMo_ID, (ulée) (1000 * CLOCK SYS _CLOCK_1US),
(u16) (500 * CLOCK_SYS_CLOCK_1US));

As System Timer is fixed 16MHz, for it SDK code uses the values below for S, mS and
us.

//system timer clock source is constant 16M, never change
enum{

CLOCK_16M_SYS_TIMER CLK_1S = 16000000,

CLOCK_16M_SYS_TIMER _CLK_1MS 16000,

CLOCK_16M_SYS_TIMER_CLK_1US
};

The following APIs in SDK is related to System Timer, therefore, time of these API
operations is showed in a similar way as “CLOCK_16M_SYS_TIMER_CLK_xxx’.

16,

void sleep_us (unsigned long us);

unsigned int clock_ time (void) ;

int clock time exceed(unsigned int ref, unsigned int span_us);
#define WaitUs sleep us

#define WaitMs (t) sleep_us((t)*1000)

AN-19112700-E1 38 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

2.2.2 System Timer Usage

After the Main function “cpu_wakeup_init” is initialized System Timer starts running, and
users can read the counter value of System Timer (“System Timer tick” for short).

The 32-bit System Timer tick will increase by 1 for each clock cycle (i.e. 1/16us). It takes
268 seconds or so (i.e. (1/16) us * (2*32)) for the system tick to loop from the initial value
0x00000000 to the maximum value Oxffffffff.

The System Timer tick won’t stop counting during MCU running process.

The System Timer tick value can be obtained by function “clock_time()”, for instance,
recording current system tick:

u32 current_tick = clock_time();
Function “clock_time()” actually reads the value counted by System Timer.

5316 BLE SDK uses System Timer tick massively to time and judge timeout. It's highly
recommended to use the System Timer tick to implement simple timing and timeout
judgment.

The software timer based on query mechanism cannot ensure high real-time and
accuracy. Generally it applies to applications which have not very harsh error
requirement. The usage of the software timer is shown as below:

1) Starttiming: Set an u32 variable, read and record current System Timer tick.
u32 start_tick = clock_time(); // clock_time() returns System Timer tick value
2) Continuously query if the difference between current System Timer tick and start_tick
exceeds the timing value at somewhere of the firmware. If yes, the timer is triggered
to execute corresponding operation, and clear timer or start a new timing cycle as
needed. Suppose the timing value is 100ms, for 16MHz system clock, the following
sentence can be used to query the timer:
if((u32) (clock_time() - start_tick) > 100 * 1000 * 16)
The difference is switched to u32 type to slove the extreme case that System Timer
tick counts from Oxffffffff to O.
In SDK, a unified calling function to solve the u32 switching problem caused by
different system clocks. No matter how many system clocks there are, the function
below can be used for query:
if(clock_time_exceed(start_tick,100 * 1000)) // unit of the second parameter is
us, it's unnecessary to worry about “16” and “32”.
Please note that for 16M clock this function only applies to timing within 268s, if
exceeds, a counter must be added to the software.
Application example: 2 seconds after condition A is triggered (only once), B()
operation is executed.

u32 a_trig_tick;
int a_trig flg=0;
while(1)
{

if(AN

AN-19112700-E1 39 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

a_trig_tick = clock_time();

a_trig flg=1;
}

if(a_trig_flg &&clock_time_exceed(a_trig_tick,2 *1000 * 1000)){
a_trig flg=0;
B();

2.3 GPIO Module

For details about GPIO module, please refer to source code in
“drivers/5316/gpio_default.h”, “gpio.c” and “gpio.h”.

Please refer to document Hawk_gpio_lookuptable for understanding register operations
in the code.

2.3.1 GPIO Definition
5316 IC has 23 GPIOs in three groups:
GPIO_PAO - GPIO_PA7, GPIO_PBO - GPIO_PB7, GPIO_PC1 - GPIO_PC7

Please note: there are 23 GPIOs in IC core, but in actual IC packages not all the GPIOs
are packaged, such as the 24-pin package has part of the GPIOs. Therefore, users
should refer to the actual IC package when using GPIOs.

Please follow the format above to use GPIO, see “drivers/5316/gpio.c” for details.

There is a special GPIO with SWS (Single Wire Slave) function. Its SWS function for
debugging and firmware burning is enabled when power on. Generally it is not used in
firmware. The SWS pin of 5316 is PC7.

2.3.2 GPIO State Control

In this section only the basic GPIO states are listed.

1. func: Configure pin as special function or general GPIO. To use input/output function,
the pin should be configured as general GPIO.
void gpio_set_func(GPIO_PinTypeDef pin, GPIO_FuncTypeDef func);
“func” can be configured as “AS_GPIO” or other special functions.
2. ie: Input enable

void gpio_set_input_en(GPIO PinTypeDef pin, unsigned int value)

Value: 1-enable, O-disable.
3. datai: Data input. When input is enabled for some GPIO pin, the datai value
indicates its current input level.

AN-19112700-E1 40 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

static inline unsigned char gpio_read(GPIO_PinTypeDef pin);

Note: If GPIO input is low level, 0 is returned; if GPIO input is high level, non-zero
value (may not be 1) is returned.

In firmware, it's recommended to invert the read values rather than using the format
such as “if(gpio_read(GPIO_PAOQ) == 1)”. Inverted values will be either 1 or 0.

if(!gpio_read(GPIO_PAQ)) // judge high/low level

4. oe: Output enable

static inline void gpio_set_output_en(GPIO PinTypeDef pin, unsigned
int value)

Value: 1-enable, O-disable
5. dataO: Data output. Value: When output is enabled, “1” indicates high-level output,
while “0” indicates low-level output.

static inline void gpio_write(GPIO_PinTypeDef pin, unsigned int
value)

6. Configurations for internal analog pull-up/pull-down resistor: x1 pull-up, x10 pull-
down, x100 pull- up. The resistance range for x1 is 8Kohm~60Kohm; x10
80Kohm~600Kohm; x100 500Kohm~2Mohm.

void gpio_setup_up_down_resistor(GPIO_PinTypeDef gpio,
GPIO _PullTypeDef up_down);

There are four configurations for up_down.

PM_PIN_PULLUP_1M

PM_PIN_PULLUP_10K

PM_PIN_PULLDOWN_100K

PM_PIN_UP_DOWN_FLOAT

Note: PM_PIN_PULLUP_1M represents x100 pull-up; PM_PIN_PULLUP_10K
represents x1 pull-up; PM_PIN_PULLDOWN_100K represents x10 pull-down.

Analog resistor has a feature: In deepsleep, all states of digital modules are invalid,
including input/output state (cannot output level in deepsleep). However, the
configured analog resistor can still take effect in deepsleep.

GPIO configuration examples:
1) Configure GPIO_PA4 as high level output.

gpio_set_func(GPIO_PA4, AS_GPIO) ; // PA4 is used as general GPIO function by
default, so this step to configure “func” can be skipped.

gpio_set_input_en(GPIO_PA4, 0);

gpio_set_output_en(GPIO_PA4, 1);

AN-19112700-E1 41 Ver.1.0.0

(TELINIG

SSEMICONDUCIOR) Telink TLSR8232 BLE SDK Developer Handbook

2)

3)

gpio_write(GPIO_PA4,1)

Configure GPIO_PC6 as input, and check if it's low-level input. Enable 10K pull up
resistor to avoid influence of float level.

gpio_set_func(GPIO_PC6, AS_GPIO) ; // PC6 is used as general GPIO function by
default, so this step to configure “func” can be skipped.

gpio_setup_up_down_resistor(GPIO_PC6, PM_PIN_PULLUP_10K);
gpio_set_input_en(GPIO_PC6, 1)

gpio_set_output_en(GPIO_PCS8, 0);

if(lgpio_read(GPIO_PC6){ // check if PC6 input is low level

Configure PAO pin as PWM function
gpio_set_func(GPIO_PAO, AS PWM) ;

2.3.3 GPIO Initialization

The “gpio_init” function is called in main.c file to initialize states of all GPIOs. Each 10 will
be initialized to its default state by “gpio_init” function, unless related GPIO parameters
are pre-configured in the app_config.h. The default states of 23 GPIOs are as below.

1)

2)

3)

4)

5)

func

Except SWS, other GPIOs are generic GPIO function.

ie

For SWS, default ie is 1; for other GPIOs, default ie is O.
oe

For all GPIOs, default oe is 0.

dataO

For all GPIOs, default dataO is O.

Internal pull up/down resistor

For all GPIOs, default internal pull up/down resistor is float.

Please see “drivers/5316/gpio.c” and “drivers/5316/gpio_default.h” for details.

If one or multiple GPIOs are configured in app_config.h, the “gpio_init” will use the values
specified in app_config.h instead of default values. The reason is that GPIO default
states are all defined by macros.

Macro example:

#ifndef PA7 INPUT ENABLE

#define PA7 INPUT ENABLE 0

#endif

AN-19112700-E1 42 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

If these macros are pre-defined in app_config.h, they will not use the default values
above. PA7 is taken as an example to illustrate GPIO state configuration in app_config.h.

1) Configure func: #define PA7_FUNC AS_GPIO
2) Configure ie: #define PA7_INPUT_ENABLE 1
3) Configure oe: #define PA7_OUTPUT_ENABLE 0
4) Configure dataO: #define PA7_DATA_OUT 0

5) Configure internal pull up/ down resistor:
#define PULL_WAKEUP_SRC_PAY PM_PIN_UP_DOWN_FLOAT

Conclusions for GPIO initialization:

1) Users can pre-define GPIO initial state in app_config.h, and initialize corresponding
GPIO to the configured value by gpio_init;

2) Users can set the GPIO states by GPIO state control functions (gpio_set_input_en,
etc.) in user_init;

3) Users can combine the two methods to configure the GPIO states.
Please note that if the state of one GPIO is configured to different values in
app_config.h and user_init, the configuration in user_init will take effect finally
according to firmware timing sequence.

2.3.4 Configure SWS Pull-up to Avoid MCU Errors

Telink MCU uses the SWS (Single Wire Slave) pin for debugging and firmware burning.
In final application code, the state of SWS is shown as below:

1. Setas SWS function rather than general GPIO.
2. Setieto 1 to enable input so as to receive commands from EVK to operate MCU.
3. Both “oe” and “dataO” are set to 0.

The settings above may bring a risk: since SWS is in float state, large jitter of system
power (e.g. transient current may approach 100mA when IR command is sent) may lead
to incorrect command reception and firmware malfunction.

This problem can be solved by enabling internal 1M pull-up resistor for SWS to change
its float state.

For 5316, SWS is multiplexed with GPIO_PC7. Enable the 1M pull-up resistor for PC7 in
the “drivers/5316/gpio_default.h”.

#ifndef PULL_WAKEUP_SRC_PC7
#define PULL_WAKEUP_SRC_PC7 PM_PIN_PULLUP_1M // SWS pullup

ttendif

AN-19112700-E1 43 Ver.1.0.0

/TELIN

O@SEMICONDUCTOR,

3. BLE Module

3.1 BLE SDK Software Architecture
3.1.1 Standard BLE SDK Architecture

Figure 3-1 shows a standard BLE SDK software architecture compliant with BLE Spec.

Telink TLSR8232 BLE SDK Developer Handbook

Application

App

Profile 1 Profile 2 <. Profile n

]

Generic Access Profile

Generic Attribute Profile

Host

Attribute Protocol Security Manager

Logical Link Control and Adaption Protocol

HCI

Link Layer Controller

Physical Layer

Figure 3-1 BLE SDK Standard Architecture
As shown above, BLE protocol stack includes two parts Host and Controller.

As BLE bottom-layer protocol, the “Controller” contains Physical Layer (PHY) and Link
Layer (LL). Host Controller Inter (HCI) is the sole communication interface for all data
transfer between Controller and Host.

As BLE upper-layer protocol, the “Host” contains protocols including Logic Link Control
and Adaption Protocol (L2CAP), Attribute Protocol (ATT), Security Manager Protocol
(SMP), as well as Profiles including Generic Access Profile (GAP) and Generic Attribute
Profile (GATT).

The “Application” (APP) layer contains user application code and Profiles of various
Services. User controls and accesses Host via “GAP”.

Host transfers data with Controller via “HCI”. See below.

AN-19112700-E1 44 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

BLE Host
HCI (‘ HCI
cmd data
HCI
HCI HCI
data event

BLE Controller

Figure 3-2 HCI Data Transfer Between Host and Controller

1) BLE Host will use HCI cmd to operate and set Controller. Controller API
corresponding to each HCI cmd will be introduced in section 3.2.8.

2) Controller will report various HCI events to Host via HCI.

3) Host will send target data to Controller via HCI, while Controller will directly load data
to Physical Layer for transfer.

4) When Controller receives RF data in Physical Layer, it will first check whether the
data belong to Link Layer or Host, and then process correspondingly: If the data
belong to LL, the data will be processed directly; if the data belong to Host, the data
will be sent to Host via HCI.

3.1.2 Telink BLE SDK Architecture

3.1.2.1 Telink BLE Controller

Telink BLE SDK supports standard BLE Controller, including HCI, PHY (Physical Layer)
and LL (Link Layer).

Telink BLE SDK contains five standard states of Link Layer (standby, advertising,
scanning, initiating, and connection), and supports slave role only in connection state.

In SDK, 5316 hci is a Controller of BLE Slave, to form a standard BLE Slave system,
another MCU running BLE Host is needed.

AN-19112700-E1 45 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
BLE
Other MCU Host
UART
HCI
) BLE
Link L
ke tayer Controller
Physical Layer

Figure 3-3 5316 hci Architecture

3.1.2.2 5316 BLE Slave
5316 BLE SDK in BLE Host fully supports stack of Slave.

When users only need to use standard BLE Slave, and 5316 BLE SDK runs Host (Slave
part) + standard Controller, the actual stack architecture will be simplified based on the
standard architecture, so as to minimize system resource consumption of the whole SDK
(including SRAM, running time, power consumption, and etc.). Following shows Telink
BLE Slave architecture. In SDK, 5316 ble remote and 5316 module are both based on
this architecture.

‘ Application
A
| GaP | (HDs| | Bas | | ora | - Profile PP
‘ Generic Attribute Profile ‘
i3 Host 826x
‘ Attribute Protocol H Security Manager ‘ BLE
‘ Logical Link Control and Adaption Protocol ‘ Stack
‘ HCI ‘
@ Power
‘ Link Layer %9 Controller
@ Management
‘ Physical Layer F:

Figure 3-4 Telink BLE Slave Architecture

AN-19112700-E1 46 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Figure 3-4, solid arrows indicate data transfer controllable via user APIs, while hollow
arrows indicate data transfer within the protocol stack which users are unable to involve
in.

Controller can still communicate with Host (L2CAP layer) via HCI; however, the HCI is no
longer the sole interface, and the APP layer can directly transfer data with Link Layer of

the Controller. Power Manager (PM) is embedded in the Link Layer, and the APP layer
can invoke related PM interfaces to set power management.

The implementation of Generic Access Profile is deleted from the Host layer, only the
service declaration of the GAP profile is retained in the APP layer. Data transfer between
the APP layer and the Host is no longer controlled via GAP; the ATT, SMP and L2CAP
can directly communicate with the APP layer via corresponding interfaces.

Generic Attribute Profile (GATT) is implemented in the Host layer based on Attribute
Protocol. Various Profiles and Services can be defined in the APP layer based on GATT.
Basic Profiles including HIDS, BAS, and OTA are provided in 5316 BLE SDK demo code.

Based on this architecture the following provides a basic introduction of 5316 BLE
protocol stack and user APIs of each layer.

Physical Layer is totally controlled by Link Layer, and it does not involve any other layers.

Though HCI still implements part of data transfer between Host and Controller, it is
basically implemented by the protocol stack of Host and Controller with few involvement
of the APP layer. Users only need to register HCI data callback processing function in the
L2CAP layer.

3.2 BLE Controller
3.2.1 BLE Controller Introduction

BLE Controller contains Physical Layer, Link Layer, HCI and Power Management.

Telink BLE SDK fully assembles Physical Layer in the library (the rf_drv.c file in
corresponding driver file), while user does not need to learn about it. Power Management
will be introduced in detail in section 4.

This section will focus on Link Layer, and also introduce HCI related interfaces to operate
Link Layer and obtain data of Link Layer.

3.2.2 Link Layer State Machine

The figure below shows Link Layer state machine in BLE Spec. Please refer to
Core_v5.0 (Vol 6/Part B/1.1 “LINK LAYER STATES”) for more information.

AN-19112700-E1 47 Ver.1.0.0

.SEMICONDUCTOR&

Telink TLSR8232 BLE SDK Developer Handbook

| Advertising |-4—b-| Standby :I Initiating

/T

:. Scanning |

.\T/,

- NN
\ RN/ \RT/

T b-l Connection H ——

_/

Figure 3-5 State Diagram of Link Layer State Machine in BLE Spec

Telink BLE SDK Link Layer state machine is shown as below.

s S

Power
Management

initiating

Slave Master
role

role

Figure 3-6 Telink Link Layer State Machine

Telink BLE SDK Link Layer state machine is consistent with BLE Spec, and it contains
five basic states: Idle (Standby), Scanning, Advertising, Initiating, and Connection.
Connection state contains Slave Role only, no Master Role.

Slave Role is single connection by default.

In this document, Slave Role will be called as “Conn state Slave role” or

“ConnSlaveRole/Connection Slave Role”,

or “ConnSlaveRole” for short.

AN-19112700-E1

48 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

“Power Management” in Figure 3-6 is not a state of LL, but a functional module which
indicates SDK only implements low power processing for Advertising and Connection
Slave Role. If Idle state needs low power, user can invoke related APIs in the APP layer.
For the other states, SDK does not manage low power, while user cannot implement low
power in the APP layer.

Based on the five states above, corresponding state machine names are defined in
“stack/ble/l/l.h”. The state name “ConnSlaveRole” is “BLS_LINK_STATE_CONN".

/Ible link layer state

#define BLS_LINK STATE IDLE 0

#define BLS_LINK_STATE_ADV BIT (0)
#define BLS_LINK STATE SCAN BIT (1)
#define BLS_LINK STATE INIT BIT (2)
#define BLS_LINK_ STATE_CONN BIT (3)

Link Layer state machine switch is automatically implemented in BLE stack bottom layer.
Therefore, users cannot modify state in APP layer, but can obtain current state by
invoking the API below. The return value will be one of the five states.

u8 blc_11 getCurrentState(void);

3.2.3 Link Layer State Machine Combined Application

3.2.3.1 Link Layer State Machine Initialization

Telink BLE SDK Link Layer fully supports all states, however, it’s flexible in design. Each
state can be assembled as a module; be default there’s only the basic Idle module, and
user needs to add modules and establish state machine combination for his application.
For example, for BLE Slave application, users need to add Advertising module and
ConnSlaveRole, while the remaining Scanning/Initiating modules are not included so as
to save code size and ramcode. The code of unused states won’t be compiled.

The API adding to the basic Idle module is as follows. This APl is necessary, since all
BLE applications need initialization.

void blc_11 initBasicMCU (u8 *public adr);

Initialization APIs of modules corresponding to the other states (Advertising, Initiating,
Slave Role) are as follows.

void blc 11 initAdvertising module (u8 *public adr);
void blc 11 initSlaveRole module (void) ;
The actual parameter “public_adr” is the pointer of BLE public mac address.

Users can flexibly establish Link Layer state machine combination by using the APIs
above. The following shows some common combination methods and corresponding
application scenes.

AN-19112700-E1 49 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.2.3.2 Idle + Advertising

bls 11 setAdvEnable (0)
Advertising| j Idle

bls 11 setAdvEnable(1)

Figure 3-7 Idle + Advertising

As shown above, only Idle module and Advertising module are initialized, and it applies
to applications which use basic advertising function to advertise product information in
single direction, e.g. beacon.

The module initialization code of Link Layer state machine is:
u8 tbl mac [6] = {... Y
blc 11 initBasicMCU(tbl mac) ;

blc 11 initAdvertising module (tbl mac) ;

State switch of Idle and Advertising is implemented via “bls_Il_setAdvEnable”.

3.2.3.3 Idle + Advertising + ConnSlaveRole

Connection
Slave role

Figure 3-8 BLE Slave LL State

AN-19112700-E1 50 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The figure above shows a Link Layer state machine combination for a basic BLE Slave
application. In SDK, 5316 hci/5316 remote/5316 module/5316 sample/5316 dual mode
are all based on this combination.

The module initialization code of Link Layer state machine is:

u8 tbl mac [6] = {...};
blc 11 initBasicMCU(tbl mac) ;
blc 11 initAdvertising module (tbl mac) ;

blc 11 initSlaveRole module();

State switch in this combination is shown as below:

1)

2)

3)

4)

After power on, 5316 MCU enters Idle state. In Idle state, Adv is enabled, and Link
Layer switches to Advertising state; when Adyv is disabled, it will return to Idle state.
The API “bls_lI_setAdvEnable” serves to enable/disable Adv.

After power on, Link Layer is in Idle state by default. Generally Adv needs to be

enabled in “user_init” so as to enter Advertising state.

When Link Layer is in Idle state, Physical Layer won’t take any RF operation

including packet transmission and reception.

When Link Layer is in Advertising state, advertising packets are transmitted in adv

channels. Master will send connection request if it receives adv packet. After Link

Layer receives this connection request, it will respond, establish connection and

enter ConnSlaveRole.

When Link Layer is in ConnSlaveRole, it will return to Idle State or Advertising state

in any of the following cases:

a) Master sends “terminate” command to Slave and requests disconnection. Slave
will exit ConnSlaveRole after it receives this command.

b) By sending “terminate” command to Master, Slave actively terminates the
connection and exits ConnSlaveRole.

c) If Slave fails to receive any packet due to Slave RF Rx abnormity or Master Tx
abnormity until BLE connection supervision timeout is triggered, Slave will exit
ConnSlaveRole.

When Link Layer exits ConnSlaveRole state, it will switch to Adv/ldle state according

to whether Adv is enabled or disabled which depends on the value configured during

last calling of “bls_II_setAdvEnable” in APP layer. If Adv is enabled, Link Layer
returns to Advertising state; if Adv is disabled, Link Layer returns to Idle state.

3.2.4 Link Layer Timing Sequence

In this section, Link Layer timing sequence in various states will be illustrated combining
with irq_handler and mainloop of 5316 BLE SDK.

_attribute ram code void irq handler (void)

AN-19112700-E1 51 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

irg blt sdk handler ();

void main loop (void)

{
/1170707777777 777777/7 BLE entxy /////7 /777707707777
blt sdk main loop();

/1111 UT entxey ////))0000000000707777777777

Function “blt_sdk_main_loop” at BLE entry serves to process data and events related to
BLE protocol stack. Ul entry is for user application code.

3.2.4.1 Timing Sequence in Idle State

When Link Layer is in Idle state, no task is processed in Link Layer and Physical Layer,
function “blt_sdk_main_loop” doesn’t work and won'’t generate any interrupt, i.e. the
whole timing sequence of mainloop is occupied by Ul entry.

3.2.4.2 Timing Sequence in Advertising State

chn 37 chn 38

chn 39
TX RX

X ‘ RX TX ‘ RX

Adv event ‘ UI task/suspend Adv event UT task/suspend

|
|
«———— Adv interval 4’:
|
|

Figure 3-9 Timing Sequence in Advertising State

As shown in Figure 3-9, an Adv event is triggered by Link Layer during each adv interval.
A typical Adv event with three active adv channels will send an advertising packet in
channel 37, 38 and 39, respectively. After an adv packet is sent, Slave enters Rx state,
and waits for response from Master: If Slave receives a scan request from Master, it will
send a scan response to Master; if Slave receives a connect request from Master, it will
establish BLE connection with Master and enter Connection state Slave Role.

It should be noted that the code of adv event is executed in function “blt_sdk_main_loop”
of mainloop. Therefore, adv event will not occupy irg time and lead to failure in real-time
irg response.

AN-19112700-E1 52 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Code of Ul entry in mainloop is executed during Ul task/suspend part in Figure 3-9. This
duration can be used for Ul task only, or MCU can enter suspend for the redundant time
So as to reduce power consumption.

In Advertising state, function “blt_sdk_main_loop” does not have much tasks to process,
only needs to trigger some callback events related to Adyv, including
BLT_EV_FLAG_ADV_DURATION_TIMEOUT, BLT_EV_FLAG_CONNECT, etc.

3.2.4.3 Timing Sequence in Conn state Slave Role

brx brx brx
start | working| pos

UI task UI task/suspend (W Ul task(} UI task/suspend
[brx ‘ ! brx ‘
4>‘ 474”
event | ! event |

«———— Conn interval ;
|

Figure 3-10 Timing Sequence in Conn state Slave Role

As shown in Figure 3-10, each conn interval starts with a brx event, i.e. transfer process
of BLE RF packets by Link Layer: PHY enters Rx state, and an ack packet will be sent to
respond to each received data packet from Master.

In 5316 BLE SDK, each brx process has three phases.

1) brx start phase
When Master needs to send packet, an interrupt is triggered by TimerO tick irq to
enter brx start phase. During this interrupt, MCU sets BLE state machine of PHY to
enter brx state, hardware in bottom layer prepares for packet transfer, and then MCU
exits from the interrupt irg.

2) brx working phase
After brx start phase ends and MCU exits from irq, hardware in bottom layer enters
Rx state first and waits for packet from Master. An ack packet will be sent to respond
to each received data packet from Master. During the brx working phase, all packet
reception and transmission are implemented automatically without involvement of
software.

3) brx post phase
After packet transfer is finished, the brx working phase is finished. TimerO tick irq
triggeres an interrupt to switch to the brx post phase. During this phase, protocol
stack will process BLE data and timing sequence according to packet transfer in the
brx working phase.

During the three phases, brx start and brx post are implemented in interrupt, while brx
working phase does not need the involvement of software, and Ul task can be executed
normally. During the brx working phase, MCU can’t enter suspend since hardware needs
to transfer packets.

Within each conn interval, the duration except for brx event can be used for Ul task only,
or MCU can enter suspend for the redundant time so as to reduce power consumption.

AN-19112700-E1 53 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

In ConnSlaveRole, “blt_sdk_main_loop” needs to process the data received during the
brx process. During the brx working phase, the data packet received from Master will be
copied out during RX interrupt irq handler; these data won’t be processed immediately,
but buffered in software RX FIFO (corresponding to my_fifo_t blt_rxfifo in code).
Function “blt_sdk_main_loop” will check if there are data in software RX fifo, and process
the detected data packets correspondingly. The processing includes:

1) Decrypt data packet

2) Analyze data packet
If the analyzed data belongs to the control command sent by Master to Link Layer,
this command will be executed immediately; if it's the data sent by Master to Host
layer, the data will be transferred to L2CAP layer via HCI interface.

3.2.4.4 Conn State Slave Role Timing Protection

In ConnSlaveRole state, each interval contains a Brx Event to transfer BLE RF packets.
In 5316 SDK, since Brx Event is triggered by interrupt, it's needed to enable MCU system
interrupt all the time. If user needs to process some time-consuming tasks and must
disable system interrupt in Conn state (e.g. erase Flash), Brx Event will be stopped, BLE
timing sequence will be disturbed, thus connection is terminated.

A timing sequence protection mechanism is provided in 5316 SDK. Users should strictly
follow this mechanism, so that BLE timing sequence won'’t be disturbed when Brx Event
is stopped. Corresponding APls are shown as below:

int bls 11 requestConnBrxEventDisable (void);
void bls 11 disableConnBrxEvent (void) ;
void bls 11 restoreConnBrxEvent (void) ;

API “bls_II_requestConnBrxEventDisable” serves to send a request to disable Brx Event.

1) If the return value is 0, it indicates the request to disable Brx Event is rejected.
During Brx working phase in Conn state, the return value must be 0; this request
won'’t be accepted until a whole Brx Event is finished, i.e. it can be accepted only
during the remaining Ul task/suspend duration.

2) If the return value is not zero, it indicates this request can be accepted, and the
returned non-zero value indicates the time (unit: ms) allowed to stop Brx Event.

a) If Link Layer is in Advertising state or Idle state without Brx Event, the return
value is “Oxffff”. In this case, user can disable system interrupt at will.

b) If Link Layer is in Conn state, and Slave receives “update map” or “update
connection parameter” request from Master but does not start updating yet, the
return value should be the difference value of the time to start updating and
current time, i.e. it's only allowed to stop Brx Event before the time to start
updating, otherwise all following packets won' be received and it will result in
disconnection.

c) |If Link Layer is in Conn state, and no update request is received from Master,
the return value should be half of the current connection supervision timeout
value. For example, suppose current timeout is 1s, the return value should be
500ms.

AN-19112700-E1 54 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

After the API “bls_lI_requestConnBrxEventDisable” is called and the request is accepted,
if the time (ms) corresponding to the return value is enough to process user task, the task
will be executed. Before the task starts, the API “bls_IlI_disableConnBrxEvent” should be
called to disable Brx Event. After the task is finished, the API
“bls_II_restoreConnBrxEvent” should be called to enable Brx Event and restore BLE
timing sequence.

The reference code is shown as below. Time values in the code depend on actual task.

if(bls 11 requestConnBrzxEventDisable() > 300)
{

bls 11 disableConnBrxEvent ():

I#1if 0 S/test 1
3 irg disable():
DEG CHN3 HIGH;
sleep us= (287*1000) ;
DEG CHN3_LOW;
irg_enable(};

iffelse [/test 2
DBG_CHN3 HIGH:
flash erase sector(0x40000):
L DEG CHN3 LOW:
! fendif

bls_11 restoreConnBrxEvent ():

3.2.5Link Layer TX FIFO & RX FIFO

All RF data of APP layer and BLE Host should be transmitted via Link Layer of Controller.
A BLE TX FIFO is designed in Link Layer, which can be used to buffer the received data
and send data after brx/btx starts.

All data received from peer device during Link Layer brx/btx will be buffered in a BLE RX
FIFO, and then transmitted to BLE Host or APP layer for processing.

Both BLE TX FIFO and BLE RX FIFO in Slave role are defined in APP layer:
MYFIFO_INIT(blt_rxfifo, 64, 8);
MYFIFO_INIT(blt_txfifo, 40, 16);

By default, RX FIFO size is 64, and TX FIFO size is 40. It's not allowed to modify the two
size values unless it's needed to use “data length extension” in core 4.2.

Both TX FIFO number and RX FIFO number must be configured as a power of 2, i.e. 2,
4, 8, 16, and etc. Users can modify as needed.

Default RX FIFO number is 8, which is a reasonable value to ensure up to 8 data packets
can be buffered in Link Layer bottom layer. If it's set as large value, it will occupy large
SRAM area. If it's set as small value, it may bring the risk of data coverage. During brx
event, Link Layer is likely to be in more data mode in an interval and continuously receive
multiple packets; if RX FIFO number is set as 4, there may be five or six packets in an
interval (e.g. OTA,), however, due to long decryption time, response to these data by
upper layer cannot be processed in real time, then some data may be overflowed.

AN-19112700-E1 55 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Take RX overflow for example, if:

1) The number RX FIFOs is 8;

2) The read pointer and write pointer is 0 and 2 respectively before brx_event(n) is
enabled;

3) main_loop is blocked by task in brx_event(n) and brx_event(n+1) and does not
process RX FIFOs in time;

4) Multiple packets in two brx_event.

As per the description in section 3.2.4.3, BLE packets received during brx_working phase
will only be copied into RX FIFO (RX FIFO write pointer ++), and the operations to fetch
and process data from RX FIFO are implemented in main_loop (RX FIFO read pointer
++). As shown below, the sixth packet will cover the area of rptr (read pointer) 0. It should
be noted that during brx working phase, Ul task occupies time slots other than interrupt
handler time for RX, TX, TimerO, etc.

brx brx brx brx
tart| brx working 17 %t brx working post
Ul task Ul task
T T T I O N O Y O B T T
H'RXIHTXI! lRXZElmllﬁlﬂH UL task/sleep ﬂpﬁﬂﬁijﬁf{i B0 ™8 || _UI task/sleep
1<—Brx event (n9—>1 1<—Brx event (n+H—>}
rptr:0

rptr:0
wptr (2+6) & (8-1)=0
If the RX fifo rptr is 0 before the
‘ pkt is received, assuming that

there are multiple pkts in one brx
event and main_loop does not
process RX fifo(means rptr not ++),
then after receiving the 6th RX
data, the RX fifo wptr will cross
the rptr area, causing 1lst pkt to

q» ‘\wptr:Z Q» be covered.

Figure 3-11 RX Overflow Case 1

Compared with the extreme case above with long task blockade duration due to one
connection interval, the case below is more likely to occur.

During one brx_event, since master writes multiple packets into slave, like 7 or 8 packets,
slave fails to process these packets in time. As shown below, the rptr (read pointer) is
increased by two, but the wptr (write pointer) is also increased by eight, which thus
causes data overflow.

AN-19112700-E1 56 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
brx brx
tart brx working post
UI task
T - - S [[s Vi U T et
H iRXl;:TXl: :szi ETXZEERXSJ ETXSJ :Rx4j iTszjiRXE;J i;FXS: ERxsj ETXGJ ERX’I: iTX?i :rRXBE iszi H UI task/sleep
D — Brx event (n) —_

rptr:0
wptr (2+8) &(8-1)=2
If the RX fifo rptr is 0 before the
pkt is received, assuming that
there is multiple pkts in one brx
event and main_loop does process 2
RX pkts(means rptr point to 2),
then after receiving the 8th RX
data, the RX fifo wptr will cross
the rptr area, causing 2nd pkt to
' H . wptr:2 «» be covered.

rptr:2
Figure 3-12 RX Overflow Case 2

Data loss due to overflow will bring MIC failure and disconnection for the encryption
system.

In the old SDK, during brx event Rx IRQ, since data are filled into Rx FIFO without
overflow check, if main_loop fails to process data in time, it will bring the risk of data
overflow. Therefore, Master should not send too many data in a connection interval, and
the time to process Ul tasks should be as short as possible, so as to avoid blockade.

Considering this, Rx overflow check is added in the new SDK: During the brx/btx event
Rx IRQ, check whether the difference of current RX FIFO wptr and rptr exceeds Rx FIFO
number. If the check result shows current Rx FIFO is fully occupied, the RF won’t send
ACK to the peer and BLE protocol ensures data will be re-transmitted.

Similarly, if there are more than 8 valid packets in an interval, the default number 8 is not
enough.

Default TX FIFO number is 16, which is enough to process common audio remote control
function with large data volume. User can modify this number as 8 to save FIFO space.

If it's set as large value (e.g. 32), it will occupy large SRAM area.

In TX FIFO, stack in SDK bottom layer needs two FIFOs, while APP layer can use the
remaing FIFOs. If TX FIFO number is 16, APP layer can use 14 FIFOs; if TX FIFO
number is 8, APP layer can use 6 FIFOs.

To send data in APP layer (e.g. call “bls_att_pushNotifyData”), users should check
current number of TX FIFOs available for Link Layer.

The API below serves to check current occupied number of TX FIFOs (note that it's not
the remaining available FIFO number).

us8 bls 11 getTxFifoNumber (void);

For example, TX FIFO number is the default value 16, among which 14 FIFOs are
available for users. Therefore, as long as the return value is less than 14, there are still
FIFOs available: if the return value is 13, there is 1 FIFO remaining; if the return value is
0, there are 14 FIFOs available.

AN-19112700-E1 57 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.2.6 Controller HCI Event

Considering users may need to record and process some key actions of BLE stack
bottom layer in APP layer, 5316 BLE SDK provides two types of events: standard HCI
event defined by BLE Controller; Telink defined event.

HCI event is designed as BLE Spec standard, while Telink defined event only applies to
BLE slave (5316 ble remote/5316 module/5316 sample/5316 dual mode, etc.), which
means for BLE slaves HCI event and Telink defined event both works.

Basically the two sets of events are independent of each other, except the connect event
and disconnect event of Link Layer.

Users can select one set or use both at the same time as needed. In 5316 BLE SDK,
5316 ble remote, 5316 module, etc. use Telink defined event, while 5316 hci uses
Controller HCI event.

As the “Host + Controller” architecture shown below, Controller HCI event reports all
events of Controller to Host via HCI.

BLE Host
HCI Host
cmd data

HCI

Controller HCI
data event

BLE Controller

Figure 3-13 HCI Event

For the definition of Controller HCI event, please refer to Core_v5.0 (Vol 2/Part E/7.7
“Events”). “LE Meta Event” in 7.7.65 refers to HCI LE (low energy) Event, while others
are common HCI events. As defined in the Spec, 5316 BLE SDK also divides Controller
HCI event into two types: HCI Event and HCI LE event. Since 5316 BLE SDK focuses on
BLE, it supports most HCI LE events and only a few basic HCI events.

For the definition of macros and interfaces related to Controller HCI event, please refer to
head files under “proj_lib/ble/hci”.

To receive Controller HCI event in Host or APP layer, users should register callback
function of Controller HCI event, and then enable mask of corresponding event.

Following are callback function prototype and register interface of Controller HCI event:
typedef int (*hci event handler t) (u32 h, u8 *para, int n);
void blc_hci_registerControllerEventHandler (
hci event handler t handler);

In the callback function prototype, “u32 h” is a mark which is used frequently in bottom-
layer stack, and users only need to know the following:

#define HCI_FLAG_EVENT TLK MODULE (1<<24)

AN-19112700-E1 58 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

#define HCI FLAG EVENT BT STD (1<<25)

“HCI_FLAG_EVENT_TLK _MODULE” will be introduced in “Telink defined event”, while
“HCI_FLAG_EVENT_BT_STD” indicates the current event is Controller HCI event.

In the callback function prototype, “para” and “n” indicate data and data length of event.
The data is consistent with the definition in BLE Spec. Users can refer to usage in 5316
module as well as the implementation of “controller_event_handler” function.

blc_hci_registerControllerEventHandler(controller_event_handler);

3.2.6.1 HCI Event

T5316 BLE SDK supports a few HCI events. The following lists some events users
would like to know.

#define HCI EVT DISCONNECTION COMPLETE 0x05
#define HCI EVT ENCRYPTION CHANGE 0x08
#define HCI EVT READ REMOTE VER INFO COMPLETE 0x0C
#define HCI EVT ENCRYPTION KEY REFRESH 0x30
#define HCI EVT LE META 0x3E

1) HCI_EVT_DISCONNECTION_COMPLETE
Please refer to Core_v5.0 (Vol 2/Part E/7.7.5 “Disconnection Complete Event”).
Total data length of this event is 7, and 1-byte “param len” is 4, as shown below.
Please refer to BLE Spec for data definition.

hei event param connection
status reason
event code len handle
0x04 0x05 4 0x00

Figure 3-14 Disconnection Complete Event

2) HCI_EVT_ENCRYPTION_CHANGE and CI_EVT_ENCRYPTION_KEY_REFRESH
Please refer to Core_v5.0 (Vol 2/Part E/7.7.8 & 7.7.39).
The two events are related to Controller encryption, and the processing is
assembled in library.

3) HCI_EVT_READ_REMOTE_VER_INFO_COMPLETE
Please refer to Core_v5.0 (Vol 2/Part E/7.7.12).
When Host uses “HCI_CMD_READ_REMOTE_VER_INFO” command to exchange
version information between Controller and BLE peer device, and version of peer
device is received, this event will be reported to Host.
Total data length of this event is 11, and 1-byte “param len” is 8, as shown below.
Please refer to BLE Spec for data definition.

hei event | param connection . manufacture .
status version subversion
event code len handle name
0x04 0x0c 8 0x00

Figure 3-15 Read Remote Version Information Complete Event

AN-19112700-E1 59 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

4) HCI_EVT_LE_META
It indicates the current event is HCI LE event, and event types can be checked
according to sub event code.

Except for HCI_EVT_LE_META, other HCI events should use the API below to enable
corresponding event masks.

ble sts t blc_hci_setEventMask cmd(u32 evtMask); //eventMask:
BT/EDR

The definitions of event masks are as follows:
#define HCI EVT MASK DISCONNECTION COMPLETE 0x0000000010
#define HCI EVT MASK ENCRYPTION CHANGE 0x0000000080

#define HCI EVT MASK READ REMOTE VERSION INFORMATION COMPLETE
0x0000000800

If users do not set HCI event masks via this API, only the mask corresponding to
“‘HCI_CMD_DISCONNECTION_COMPLETE” will be enabled in SDK by default, which
means SDK only ensures the report of Controller disconnect event by default.

3.2.6.2 HCI LE Event

When the event code in HCI event is “HCI_EVT_LE_META?”, it indicates it's a HCI LE
event, common subevent code are shown as below:

#define HCI SUB EVT LE CONNECTION COMPLETE 0x01
#define HCI SUB EVT LE ADVERTISING REPORT 0x02

#define HCI SUB EVT LE CONNECTION UPDATE COMPLETE
0x03

1) HCI_SUB_EVT_LE_CONNECTION_COMPLETE
Please refer to Core_v5.0 (Vol 2/Part E/7.7.65.1 “LE Connection Complete Event”).
When Controller Link Layer establishes connection with peer device, this event will
be reported.
Total data length of this event is 22, and 1-byte “param len” is 19, as shown below.
Please refer to BLE Spec for data definition.

0x04 0x3e 19 0x01

hei event param | subevent connection peerAddr
status Role
event code len code handle type
peer addr conn interval
supervision master
conn latecncy i + clock
imeou accuracy

Figure 3-16 LE Connection Complete Event

2) HCI_SUB_EVT_LE_ADVERTISING_REPORT
Please refer to Core_v5.0 (Vol 2/Part E/7.7.65.2 “LE Advertising Report Event”).

AN-19112700-E1 60 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

When Controller Link Layer scans the right adv packet, the packet will be reported to
Host via “HCI_SUB_EVT_LE_ADVERTISING_REPORT".
Data length of this event is not fixed and it depends on payload of the adv packet, as
shown below. Please refer to BLE Spec for data definition.

0x04 0x3e 0x02
heci event | param |subevent num event .
event code len code report type address typell...]
address[1...1] length[1.. 1]
datall...1i] rssil[l..1]

Figure 3-17 LE Advertising Report Event

Note: In Telink BLE SDK, each “LE Advertising Report Event” only reports an adv
packet, i.e. “i” in Figure 3-16 is 1.

3) HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE
Please refer to Core_v5.0 (Vol 2/Part E/7.7.65.3 “LE Connection Update Complete
Event”).
When “connection update” in Controller takes effect,
“HCI_SUB_EVT_LE_CONNECTION_UPDATE_COMPLETE” will be reported to
Host.
Total data length of this event is 13, and 1-byte “param len” is 10, as shown below.
Please refer to BLE Spec for data definition.

0x04 0Ox3e 10 0x03
heci event param |subevent connection
status
event code len code handle
. supervision
conn interval conn latency)
timeout

Figure 3-18 LE Connection Update Complete Event

“HCI LE event” needs the interface below to enable mask.
ble sts t blc_hci_le setEventMask cmd(u32 evtMask);
//eventMask: LE

The following lists some evtMask definitions. Users can view other events in
“hci_const.h”.

#define HCI LE EVT MASK CONNECTION COMPLETE 0x00000001
#define HCI LE EVT MASK ADVERTISING REPORT 0x00000002
#define HCI LE EVT MASK CONNECTION UPDATE COMPLETE 0x00000004

If users do not set HCI LE event masks via this API, masks of all HCI LE events in SDK
are disabled by default.

AN-19112700-E1 61 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.2.7 Telink Defined Event

Besides the standard Controller HCI event, SDK also provides Telink defined event, the
architecture is shown below.

In terms of user application, events are from Host and Controller (equivalent to the whole
BLE stack). Most events are from Controller, and will be introduced in this section. The
Host part will introduce a few events from Host.

Application
emd Telink
data data defined
event
BLE Host +

BLE Controller

Figure 3-19 Architecture of Telink Defined Event

Up to 20 Telink defined events are supported, which are defined by using macros in
“stack/ble//lI/l.h".

Current new SDK supports the following callback events.
“‘BLT_EV_FLAG_CONNECT/BLT_EV_FLAG_TERMINATE” has the same function as
“HCI_SUB_EVT_LE_CONNECTION_COMPLETE” and
“‘HCI_EVT_DISCONNECTION_COMPLETE” in HCI event, but data definition of these
events are different.

#define BLT EV_FLAG ADV 0
#define BLT EV_FLAG ADV_DURATION TIMEOUT 1
#define BLT EV_FLAG_SCAN RSP 2
#define BLT EV_FLAG_CONNECT 3
#define BLT EV_FLAG TERMINATE 4
#define BLT EV_FLAG PAIRING BEGIN 5
#define BLT EV_FLAG PAIRING END 6
#define BLT EV_FLAG ENCRYPTION CONN_DONE 7
#define BLT EV_FLAG DATA LENGTH EXCHANGE 8
#define BLT EV FLAG GPIO EARLY WAKEUP 9
#define BLT EV_FLAG CHN MAP REQ 10
#define BLT EV_FLAG CONN_PARA REQ 11
#define BLT EV _FLAG CHN MAP UPDATE 12
#define BLT EV_FLAG CONN PARA UPDATE 13
#define BLT_EV_FLAG_SUSPEND ENTER 14
#define BLT EV_FLAG SUSPEND EXIT 15

AN-19112700-E1 62 Ver.1.0.0

(TELINIS

SSEMICONDUCIOR) Telink TLSR8232 BLE SDK Developer Handbook
#define BLT EV_FLAG RX DATA ABANDOM 16
#define BLT _EV_FLAG_SMP_PINCODE PROCESS 17
#define BLT EV_FLAG_SMP_KEY MISSING 18
#define BLT EV_FLAG PHY UPDATE 19

Telink defined event is only used in BLE Slave applications (remote/module). There are
two methods to call back Telink defined events in BLE slave applications.

1) The first: Registering the callback function of each event independently, which we
call “independent registration.” The prototype of callback function is:

typedef void (*blt_event_callback t)(u8 e, u8 *p, int n);

w9,

e”: event number.

p”: It's the pointer of the data transmitted from the bottom layer when callback
function is executed, and it varies with the callback functions.

“n”: length of valid data pointed by pointer.

The API for registering callback functions is:

“

void bls _app registerEventCallback (u8 e,

blt event callback t p);

2) The second: Callback functions of all the events share one entry. Whether the event
responds depends on if the corresponding event mask is enabled. This we call
“shared event entry”.

Registering event callback via “shared event entry” use the same API of HCI event:

typedef int (*hci event handler t)(u32 h,us *para, int n);
voidblc_hci_registerControllerEventHandler (
hci event handler t handler);

Even the same register callback function of HCI event is used, the implementation of
the function is slightly different.
HCI event callback function:
h=HCI_FLAG_EVENT_BT_STD | hci_event_code;
Telink defined event “shared event entry”:
H =HCI_FLAG_EVENT_TLK_MODULE | €;
“e” is the event number of Telink defined event.
“shared event entry” of Telink defined event is similar to the mask of HCI event.
Whether each event repsonds depends on the mask set by the API below:
ble_sts t bls_hci_mod_setEventMask_cmd(u32 evtMask);
The relationship between evtMask and event number is:
evtMask = BIT(e);

AN-19112700-E1 63 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The two methods to implement Telink defined event is mutually exclusive. It is
recommended to use the first one “independent registration” as most SDKs use this one.
Only 5316 module uses the second one “shared event entry”.

For the usage of Telink defined event, please see the demo code of project
“5316_ble_remote” for method 1 “independent registration”; please see the demo code of
project “6316_module” for method 2 “shared event entry”.

The implementation of the two methods are shown below by taking connect event
callback and terminate event callback for example.

1) Method 1 “independent registration”
void task_connect (u8 e, u8 *p, int n)
{

//ladd connect callback code here.

}

void task_terminate (u8 e, u8 *p, int n)
{
/ladd terminate callback code here.

}
bls_app registerEventCallback (BLT_EV_FLAG_CONNECT,

&task connect);
bls app registerEventCallback (BLT EV_FLAG TERMINATE,

&ble remote_terminate) ;

2) Method 2 “shared event entry”

int controller_event_handler(u32 h, u8 *para, int n)

{
if((h&HCI_FLAG_EVENT_TLK_MODULE)!= 0) //module event
{
switch(event)
{
case BLT_EV_FLAG_CONNECT:
{
bls 12cap_requestConnParamUpdate (8, 12, 99, 400);
spp_send_data(HCI_FLAG_EVENT_TLK_MODULE, pEvt);
}
break;

case BLT_EV_FLAG_TERMINATE:

AN-19112700-E1 64 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
{
spp_send_data(HCI_FLAG_EVENT_TLK_MODULE, pEvt);
}
break;

blc_hci_registerControllerkEventHandler(controller_event_handler);
bls _hci_mod_setEventMask_cmd(@xfffff);

In the following sub-sections, all events, event trigger conditions and parameters of
corresponding callback functions for Controller will be introduced in details. Events
“‘BLT_EV_FLAG_PAIRING_BEGIN” and “BLT_EV_FLAG_PAIRING_END”, which do not
belong to Controller, will be introduced in Host SMP.

3.2.7.1 BLT_EV_FLAG_ADV

This event is not used in current SDK.

3.2.7.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT

Event trigger condition: If the API “bls_II_setAdvDuration” is called to set advertising
duration, a timer will be started in BLE stack bottom layer. When the timer reaches the
specified duration, advertising is stopped, and this event is triggered. In the callback
function of this event, users can implement operations such as modifying adv event type,
re-enabling advertising, re-configuring advertising duration and etc.

(TSN

Pointer “p”: null pointer.

wn,

Data length “n”: 0.

Note: This event won't be triggered in “advertising in ConnSlaveRole” which is an
extended state of Link Layer.

3.2.7.3 BLT_EV_FLAG_SCAN_RSP

Event trigger condition: When Slave is in advertising state, this event will be triggered if
Slave responds with scan response to the scan request from Master.

“ 0,

Pointer “p”: null pointer.

Data length “n”: 0.

3.2.7.4 BLT_EV_FLAG_CONNECT

Event trigger condition: When Link Layer is in advertising state, this event will be
triggered if it responds to connect request from Master and enters Conn state Slave role.

AN-19112700-E1 65 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
Data length “n”: 34.

@ .

Pointer “p”: p points to one 34-byte RAM area, corresponding to the “connect request
PDU” below.

Payload
Init&, AdvA LLData
(6 octets) (6 octets) (22 octets)

Figure 2.10: CONNECT_REQ PDU payload

The format of the LLData field is shown in Figure 2.11.

LLData

AA CRCInit [WinSize [WinOffset | Interval | Latency | Timeout ChM Hop | SCA
(4 octets) [(3 octets) [(1 octet) | (2 octets) | (2 octets) | (2 octets) | (2 octets) | (5 octets) | (5 bits) | (3 bits)

Figure 2.11: LLData field structure in CONNECT_REQ PDU's payload

Figure 3-20 Connect Request PDU

Please refer to “rf_packet_connect_t” defined in “ble_common.h”. In the structure below,
the connect request PDU is from scanA[6] (corresponding to InitA in Figure 3-20) to hop.

typedef struct({
u32 dma_len;
u8 type;
u8 rf len;
u8 scanAl[6];
u8 advA[6];
u8 accessCodel[4];
u8 crcinit[3];
u8 winSize;
ul6 winOffset;
ul6 interval;
ulé latency;
ul6 timeout;
u8 chm[5];
u8 hop;

}rf packet connect t;

3.2.7.5BLT_EV_FLAG_TERMINATE

Event trigger condition: This event will be triggered when Link Layer state machine exits
Conn state Slave role in any of the three specific cases.

“ M,

Pointer “p”: p points to an u8-type variable “terminate_reason”. This variable indicates the
reason for disconnection of Link Layer.

AN-19112700-E1 66 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Data length “n™: 1.

Three cases to exit Conn state Slave role and corresponding reasons are listed as below:

1) If Slave fails to receive packet from Master for a duration due to RF communication
problem (e.g. bad RF or Master is powered off), and “connection supervision
timeout” expires, this event will be triggered to terminate connection and return to
None Conn state. The terminate reason is HCI_ERR_CONN_TIMEOUT (0x08).

2) If Master sends “terminate” command to actively terminate connection, after Slave
responds to the command with an ack, this event will be triggered to terminate
connection and return to None Conn state. The terminate reason is the Error Code in
the “LL_TERMINATE_IND?” control packet received in Slave Link Layer. The Error
Code is determined by Master. Common Error Code includes
HCI_ERR_REMOTE_USER_TERM_CONN (0x13),
HCI_ERR_CONN_TERM_MIC_FAILURE (0x3D), and etc.

3) If Slave calls the API “bls_lI_terminateConnection (u8 reason)” to actively terminate
connection, this event will be triggered. The terminate reason is the actual parameter
“reason” of this API.

3.2.7.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE

Event trigger condition: This event will be triggered when encryption of Link Layer is
finished (i.e. Link Layer receives “start encryption response” from Master).

“ 0,

Pointer “p”: p points to an u8-type variable “smp_flag”, which indicates current encryption
of Link Layer is triggered during first pairing or auto re-connection. If “smp_flag” is 0, it
indicates first pairing; if “smp_flag” is 1, it indicates auto re-connection.

#define SMP_STANDARD PAIR 0

#define SMP_FAST CONNECT 1

Data length “n”: 1.

3.2.7.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE

Event trigger condition: This event will be triggered when Slave and Master exchange
max data length of Link Layer, i.e. one side sends “Il_length_req”, while the other side
responds with “ll_length_rsp”. If Slave actively sends “Il_length_req”, this event won’t be
triggered until “Il_length_rsp” is received. If Master initiates “Il_length_req”, this event will
be triggered immediately after Slave responds with “Il_length_rsp”.

Data length “n”: 12.

“ 0,

Pointer “p”: p points to data of a memory area, corresponding to the beginning six ul6-
type variables in the structure below.

typedef struct ({

ulo6 connEffectiveMaxRxOctets;
ule connEffectiveMaxTxOctets;
ulo connMaxRxOctets;
ule connMaxTxOctets;

AN-19112700-E1 67 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
ulé connRemoteMaxRxOctets;
ulé connRemoteMaxTxOctets;
uléb supportedMaxRxOctets;
ulé supportedMaxTxOctets;
ulé connInitialMaxTxOctets;
u8 connMaxTxRxOctets req;

}11 data extension t;

“connEffectiveMaxRxOctets” and “connEffectiveMaxTxOctets” are max RX and TX data
length finally allowed in current connection; “connMaxRxOctets” and “connMaxTxOctets”
are max RX and TX data length of the device; “connRemoteMaxRxOctets” and
“‘connRemoteMaxTxOctets” are max RX and TX data length of peer device.

connEffectiveMaxRxOctets = min(supportedMaxRxOctets,connRemoteMaxTxOctets);

connEffectiveMaxTxOctets = min(supportedMaxTxOctets, connRemoteMaxRxOctets);

3.2.7.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP

Event trigger condition: Slave will calculate wakeup time before it enters suspend, so that
it can wake up when the wakeup time is due (It's realized via timer in suspend state).
Since user tasks won’t be processed until wakeup from suspend, long suspend time may
bring problem for real-time demanding applications. Take keyboard scanning as an
example, if user presses keys fast, to avoid key press loss and process debouncing, it's
recommended to set the scan interval as 10~20ms; longer suspend time (e.g. 400ms or
1s, which may be reached when latency is enabled) will lead to key press loss. So it's
needed to judge current suspend time before MCU enters suspend; if it's too long, the
wakeup method of user key press should be enabled, so that MCU can wake up from
suspend in advance (i.e. before timer timeout) if any key press is detected. This will be
introduced in details in following PM module section.

The event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP” will be triggered if MCU is woke
up from suspend by GPIO in advance before wakeup timer expires.

Data length “n”: 1.

.

Pointer “p”: p points to an u8-type variable “wakeup_status”. This variable indicates valid
wakeup source status for current suspend. Following types of wakeup status are defined
in “drivers/5316/pm.h” (“WAKEUP_STATUS_COMP” is not used in SDK).

enum {
WAKEUP_STATUS_COMP = BIT(9),
WAKEUP_STATUS_TIMER = BIT(1),
WAKEUP_STATUS _CORE = BIT(2),
WAKEUP_STATUS_PAD = BIT(3),

STATUS_GPIO_ERR_NO_ENTER_PM = BIT(7),
STATUS_ENTER_SUSPEND = BIT(30),

} PM_WakeupStatusTypeDef;

AN-19112700-E1 68 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

For definitions of the parameters above, please refer to the return value “int” of the API in
“Power Management”:

int cpu_sleep_wakeup (int deepsleep, int wakeup_src, u32 wakeup_tick);

3.2.7.9 BLT_EV_FLAG_CHN_MAP_REQ

Event trigger condition: When Slave is in Conn state, if Master needs to update current
connection channel list, it will send a “LL_CHANNEL_ MAP_REQ” command to Slave;
this event will be triggered after Slave receives this request from Master and has not
processed the request yet.

“w n,

Data length “n”: 5.

“ 0.

Pointer “p”: p points to the starting address of the following channel list array.
unsigned char type/ bltc.conn_chn_map|[5]

Please note that when the callback function is executed, p points to the old channel map
which is not updated.

Five bytes are used in “conn_chn_map” to represent current channel list by mapping.
Each bit represents a channel:

conn_chn_map[0] bit0-bit7 represent channel0-channel7 respectively.
conn_chn_map[1] bit0-bit7 represent channel8-channell5 respectively.
conn_chn_map[2] bit0-bit7 represent channell6-channel23 respectively.
conn_chn_map[3] bit0-bit7 represent channel24-channel31 respectively.

conn_chn_map[4] bit0-bit4 represent channel32-channel36 respectively.

3.2.7.10 BLT_EV_FLAG_CHN_MAP_UPDATE

Event trigger condition: When Slave is in connection state, this event will be triggered if
Slave has updated channel map after it receives the “LL_CHANNEL_ MAP_REQ”
command from Master.

(TSN

Pointer “p”: p points to the starting address of the new channel map conn_chn_map[5]
after update.

“w n,

Data length “n”: 5.

3.2.7.11 BLT_EV_FLAG_CONN_PARA_REQ

Event trigger condition: When Slave is in connection state (Conn state Slave role), if
Master needs to update current connection parameters, it will send a
‘LL_CONNECTION_UPDATE_REQ” command to Slave; this event will be triggered after
Slave receives this request from Master and has not processed the request yet.

Data length “n”: 11.

Pointer “p”: p points to the 11-byte PDU of the LL_ CONNECTION_UPDATE_REQ, as
shown below.

AN-19112700-E1 69 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
CtrData
WinSize WinOffset Interval Latency Timeout Instant
(1 octet) (2 octets) (2 octets) (2 octets) (2 octets) (2 octets)

Figure 2.15: CtrData field of the LI CONNECTION _UPDATE RECQ FDU

Figure 3-21 LL_CONNECTION_UPDATE_REQ Format in BLE Stack

3.2.7.12 BLT_EV_FLAG_CONN_PARA_UPDATE

Event trigger condition: When Slave is in connection state, this event will be triggered if
Slave has updated connection parameters after it receives the
“LL_CONNECTION_UPDATE_REQ” from Master.

Data length “n”: 6.

“n,

Pointer “p”: p points to the new connection parameters after update, as shown below:
p[0] | p[1]<<8: new connection interval in unit of 1.25ms
p[2] | p[3]<<8: new connection latency

p[4] | p[5]<<8: new connection timeout in unit of 10ms

3.2.7.13 BLT_EV_FLAG_SUSPEND_ENETR

Event trigger condition: When Slave executes function “blt_sdk_main_loop”, this event
will be triggered before Slave enters suspend.

(TSN

Pointer “p”: Null pointer.

wn,

Data length “n”: 0.

3.2.7.14 BLT_EV_FLAG_SUSPEND EXIT

Event trigger condition: When Slave executes function “blt_sdk_main_loop”, this event
will be triggered after Slave is woken up from suspend.

.

Pointer “p”: Null pointer.

Data length “n”: 0.

Note: This callback is executed after SDK bottom layer executes “cpu_sleep_wakeup”
and Slave is woke up, and this event will be triggered no matter whether the actual
wakeup source is gpio or timer. If the event “BLT_EV_FLAG_GPIO_EARLY_WAKEUP”
occurs at the same time, for the sequence to execute the two events, please refer to
pseudo code in “Power Management — PM Working Mechanism”.

3.2.7.15BLT_EV_FLAG_PHY_UPDATE

Event trigger condition: when Salve receives LL_PHY_UPDATE_IND PDU sent by
master and PHY is updated successfully, this event will be triggered.

.

Pointer “p”: p points to the updated Tx and Rx PHY. PHY could be the enum values
below:

AN-19112700-E1 70 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
BLE_PHY_1M = BIT(9),
BLE _PHY 2M = BIT(1),

Note: TLSR8232 could only use symmetric PHY, that is, Rx and Tx use the same PHY.
Please see section 2M PHY Supported for usage.

3.2.8 Controller API
3.2.8.1 Controller API Brief

In standard BLE stack architecture (see Figure 3-1), APP layer cannot directly
communicate with Link Layer of Controller, i.e. data of APP layer must be first transferred
to Host, and then Host can transfer control command to Link Layer via HCI. All control
commands from Host to LL via HCI follow the definition in BLE Spec Core_v5.0, please
refer to Core_v5.0 (Vol 2/Part E/ Host Controller Interface Functional Specification).

5316 BLE SDK based on standard BLE architecture can serve as a Controller and work
together with Host system. Therefore, all APIs to operate Link Layer strictly follow the
data format of Host commands in the spec.

Although the architecture in

Figure 3-4 is used in 5316 BLE SDK, APP layer can directly operate Link Layer, it still
uses the standard APIs of HCI part. Corresponding Host commands in Spec are provided
in the API introduction below. Users can refer to the detailed descriptions in Spec.

In BLE Spec, all HCI commands to operate Controller have corresponding “HCI
command complete event” or “HCI command status event” as response to Host layer.
However, in Telink BLE SDK, there are different situations:

1) For applications such as 5316 _hci, Telink IC only serves as BLE controller, and
needs to work together with BLE Host MCU. Each HCI command will generate
corresponding “HCI command complete event” or “HCI command status event”.

2) The processing is different for master. As 5316 does not support master we do not
provide detailed information here.

1

Controller API declaration is available in head files under “stack/ble/llI” and “stack/ble/hci”.
Corresponding to Link Layer state machine functions, the “lI” directory contains Il.h,
Il_adv.h, and Il_slave.h, e.g. APIs related to advertising function should be in Il_adv.h.

3.2.8.2 API Return Type ble_sts _t

An enum type “ble_sts t” defined in “stack/ble/ble_common.h” is used as return value
type for most APlIs in SDK. When API calling with right parameter setting is accepted by
the protocol stack, it will return BLE_SUCCESS, value being“0”; if any non-zero value is
returned, it indicates a unique error type. All possible return values and corresponding
error reason will be listed in the subsections below for each API.

The “ble_sts_t” applies to APlIs of all layers, including APlIs of Link Layer.

3.2.8.3 MAC Address Initialization

In this document, “BLE MAC address” refers to “public address” and “random static
address” by default.

AN-19112700-E1 71 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

In 5316 BLE SDK, by calling the interface below “public address” and “random static
address” will be obtained.

void blc_initMacAddress(int flash_addr, u8 *mac_public,
u8 *mac_random_static);

Fill “flash_addr” with the address for storing MAC address in Flash. From the content
above, the address of 5316 512K Flash should be 0x76000. If “random static address” is
not needed, fill “mac_random_static” with “NULL".

The Link Layer initialization API can be called to load the obtained BLE public MAC
address into BLE protocol stack.

blc_11 initBasicMCU(mac public);

In order to use advertising state in Link Layer state machine, MAC address needs to be
loaded.

blc_11 initAdvertising module(mac_public);

As introduced above, the 6-byte BLE MAC address will be downloaded into specific
Flash area of the actual products by Telink jig system. Users need to obtain the MAC
address from Bluetooth SIG.

3.2.8.4 Link Layer State Machine Initialization

The APIs below are used to configure initialization of each module when BLE state
machine is established. Please see the previous section for introduction of Link Layer
state machine.

void blc_11 initBasicMCU (u8 *public adr)
void blc_11 initAdvertising module (u8 *public adr);
void blc_11 initSlaveRole module (void) ;

3.2.8.5 bls_Il_setAdvData

Please refer to Core_v5.0 (Vol 2/Part E/ 7.8.7 “LE Set Advertising Data Command”) for
details.

LSB MSB
Header Payload
(16 bits) {(as per the Length field in the Header)

Figure 3-22 Adv Packet Format in BLE Stack

As shown above, an Adv packet in BLE stack contains 2-byte header, and Payload. The
maximum length of Payload is 31 bytes.

The API below is used to set AdvData data in Payload:

ble sts t bls 11 setAdvData(u8 *data, u8 len);

AN-19112700-E1 72 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The “data” pointer points to the starting address of AdvData, while the “len” indicates data
length. The table below lists possible results for the return type “ble_sts_t”.

ble sts t Value ERR Reason

BLE_SUCCESS 0

Len exceeds the

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12)
- - - = - maximum length 31

This API can be called in initialization to set adv data, or called in mainloop to modify adv
data when the firmware is running.

In “56316 ble remote” project of 5316 BLE SDK, the definition of AdvData is shown as
below. Please refer to “Data Type Specification” in BLE Spec CSS v6 (Core Specification
Supplement v6.0) for meanings of fields.

u8 tbl advDatal[] = {
0x05, 0x09, 'G', 'h', 'i', '4d'",
0x02, 0x01, 0x05,
0x03, 0x19, 0x80, 0x01,
0x05, 0x02, 0x12, 0x18, Ox0F, 0x18,
}i

The adv device name is set as " Ghid " in the adv data shown above.

3.2.8.6 bls_ll_setScanRspData
Please refer to Core_v5.0 (Vol 2/Part E/ 7.8.8 “LE Set Scan response Data Command”).

Similar to the setting of Adv packet Payload, an APl is used to set Scan response
Payload:

ble sts t bls 11 setScanRspData (u8 *data, u8 len);

The “data” pointer points to the starting address of scanRspData in Payload, while the
“‘len” indicates data length. The table below lists possible results for the return type
“ble_sts_t".

ble sts t Value ERR Reason

BLE_SUCCESS 0

Len exceeds the

HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12 .
- - - 7= - maximum length 31

This API can be called in initialization to set Scan response data, or called in mainloop to
modify scan response data when the firmware is running.

In project “56316 ble remote” of 5316 BLE SDK, the definition of Scan response data is
shown as below. The name of scan device is "GRemote". Please refer to “Data Type
Specification” in BLE Spec CSS v6 (Core Specification Supplement v6.0) for meanings of
fields.

AN-19112700-E1 73 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
u8 tbl scanRsp [] = {
0x08, 0x09, 'G', 'R', 'e', 'm', 'o', 't', 'e',

}i

Since device names configured in advertising data and scan response data are different,
the device names scanned by a mobile phone or I0S system may be different:

1) If some devices only listen for Adv packets, the scanned device name is " Ghid ".
2) If some devices send scan request after Adv packet is received, and read the scan
response, the scanned device name may be " GRemote ".

Users can configure device name in the two packets (Adv packet & scan response
packet) as the same one, so that the scanned device name is consistent. Actually when
Master reads device’s Attribute Table after connection is established, the obtained “gap
device name” of device will be shown according to the configuration in Attribute Table.
Please refer to Attribute Table section for details.

3.2.8.7 bls_Il_setAdvParam

Please refer to Core_v5.0 (Vol 2/Part E/ 7.8.5 “LE Set Advertising Parameters
Command”).

Advertising Advertising Advertising
Event Event Event
T_aadvEvent o T_advEvent -
advinterval o advinterval .
i aduDE?a IV au‘vDe.’a?
Adverfising
State
entered

Figure 3-23 Advertising Event in BLE Stack

The figure above shows Advertising Event (Adv Event in brief) in BLE stack. It indicates
during each T_advEvent, Slave implements one advertising process, and sends one
packet in three advertising channels (channel 37, channel 38, and channel 39)
respectively. The API below is used to set parameters related to Adv Event.

ble sts t bls 11 setAdvParam(ul6 intervalMin, ul6 intervalMax,
u8 advType, u8 ownAddrType,
u8 peerAddrType, u8 *peerAddr,

u8 adv_channelMap, u8
advFilterPolicy);

1) intervalMin and intervalMax:
The two parameters serve to set the range of advertising interval in unit of 0.625ms.
The valid range is from 20ms to 10.24s, and intervalMin should not exceed
intervalMax.

AN-19112700-E1 74 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

As required by BLE Spec, it's not recommended to set adv interval as fixed value; in
Telink BLE SDK, the eventual adv interval is random variable within the range of
intervalMin ~ intervalMax. If intervalMin and intervalMax are set as same value, adv
interval will be fixed as the intervalMin.
Adv packet type has limits to the setting of intervalMin and intervalMax. Please refer
to Core_v5.0 (Vol 6/Part B/ 4.4.2.2 “Advertising Events”) for details.

2) advType
As specified in BLE Spec, the following four basic advertising event types are
supported.

Advertising Event | PDU used in this advertising | Allowable response PDUs for
Type event type advertising event
SCAN_REQ | CONNECT_REQ
Connectable Undi- ADV_IND YES YES
rected Event
Connectable ADV_DIRECT_IND NO YES*
Directed Event
Non-connectable ADV_NONCONN_IND NO NO
Undirected Event
Scannable Undi- ADV_SCAN_IND YES NO
rected Event

Table 4.1: Advertising event types, PDUs used and allowable response PDUs
Figure 3-24 Four Adv Events in BLE Stack

In the “Allowable response PDUs for advertising event” column, “YES” and “NO”
indicate whether corresponding adv event type can respond to “Scan request” and
“Connect Request” from other device. For example, “Connectable Undirected Event”
can respond to both “Scan request” and “Connect Request”, while “Non-connectable
Undirected Event” will respond to neither “Scan request” nor “Connect Request”.
For “Connectable Directed Event”, “YES” marked with an asterisk indicates the
matched “Connect Request” received won'’t be filtered by whitelist and this event will
surely respond to it. Other “YES” not marked with asterisk indicate corresponding
request can be responded depending on the setting of whitelist filter.

Among the four advertising events “Connectable Directed Event” supports two sub-
types including “Low Duty Cycle Directed Advertising” and “High Duty Cycle Directed
Advertising”. Therefore, five types of adv events are supported in all, as defined in
“stack/ble/ble_common.h”:

/* Advertisement Type */
typedef enum{
ADV_TYPE CONNECTABLE UNDIRECTED = 0x00, // ADV_IND
ADV TYPE CONNECTABLE DIRECTED HIGH DUTY = 0x01,
//ADV_INDIRECT IND (high duty cycle)

ADV _TYPE SCANNABLE UNDIRECTED = 0x02 //ADV_SCAN IND

AN-19112700-E1 75 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

ADV_TYPE NONCONNECTABLE UNDIRECTED = 0x03,
//ADV_NONCONN_IND

ADV TYPE CONNECTABLE DIRECTED LOW DUTY = 0x04,
//ADV_INDIRECT IND (low duty cycle)

}advertising type;

By default, the most common adv event type is
ADV_TYPE CONNECTABLE UNDIRECTED.

3) ownAddrType
It is used to specify MAC address type in adv packets.
There are two basic address types: public and random.

/* Device Address Type */

#define BLE ADDR PUBLIC 0

#define BLE ADDR RANDOM 1

There are four optional values for “ownAddrType 4” to specify adv address type.

typedef enum{

OWN ADDRESS PUBLIC 0,
OWN_ADDRESS RANDOM = 1,

OWN ADDRESS RESOLVE PRIVATE PUBLIC

Il
N
<

OWN_ADDRESS RESOLVE PRIVATE RANDOM = 3,

}own addr type t;

Only two parameters are introduced herein.

OWN_ADDRESS_PUBLIC means using public MAC address for advertising. The
actual address is the set by API “API blc_II_initAdvertising_module(u8 *public_adr)
in MAC address initialization.

OWN_ADDRESS_RANDOM means using random static MAC address for
advertising. The address is set by the API below.

blc_11 setRandomAddr(mac_random_static);

4) peerAddrType and *peerAddr
When advType is set as directed adv type
(ADV TYPE CONNECTABLE DIRECTED HIGH DUTY Of
ADV_TYPE CONNECTABLE DIRECTED LOW DUTY), the “peerAddrType” and
“*peerAddr” serve to specify the type and address of peer device MAC Address.
When advType is set as type other than directed adv, the two parameters are invalid,
and they can be set as “0” and “NULL”.

AN-19112700-E1 76 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

5) adv_channelMap
The “adv_channelMap” is used to set advertising channel. It can choose any one or
more of channel 37, 38, 39. The value “adv_channelMap” can be the following three
or any combination of the three.

#define BLT ENABLE ADV_37 BIT (0)
#define BLT ENABLE ADV 38 BIT (1)
#define BLT ENABLE ADV 39 BIT(2)
#define BLT ENABLE ADV ALL

(BLT_ENABLE ADV_37 | BLT_ENABLE ADV_38 |
BLT ENABLE ADV_39)

6) advFilterPolicy
The “advFilterPolicy” serves to set filtering policy for scan request/connect request
from other device when adv packet is transmitted. Address to be filtered needs to be
pre-loaded in whitelist.
Filtering type options are shown as below. The “ADV_FP_NONE” can be selected if
whitelist filter is not needed.

#define ADV FP ALLOW SCAN ANY ALLOW CONN ANY 0x00
#define ADV_FP _ALLOW SCAN WL ALLOW CONN_ANY 0x01
#define ADV_FP ALLOW SCAN ANY ALLOW CONN_ WL 0x02
#define ADV FP ALLOW SCAN WL ALLOW CONN WL 0x03

#define ADV_FP NONE ADV_FP ALLOW SCAN ANY ALLOW CONN_ ANY

The table below lists possible values and reasons for the return value “ble_sts_t".

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

The value of intervalMin or
0x12 intervalMax does not meet the
requirement of BLE Spec.

HCI_ERR_INVALID_HCI_CMD_PARA
MS

According to Host command design in HCI part of BLE Spec, eight parameters are
configured simultaneously by the API “bls_II_setAdvParam”. This setting also takes some
coupling parameters into consideration. For example, the “advType” has limits to the
setting of intervalMin and intervalMax, and range check depends on the advType; if
advType and advinterval are set in two APIs, the range check is uncontrollable.

Considering users may often modify some common parameters, three independent APls
are provided, so that users can directly call one API to modify corresponding
parameter(s), rather than calling the “bls_II_setAdvParam” to set eight parameters
simultaneously.

ble sts t bls_ 1l setAdvInterval (ul6 intervalMin, ul6
intervalMax) ;

ble sts t bls_ 11 setAdvChannelMap (u8 adv_channelMap) ;

AN-19112700-E1 77 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

ble sts t bls 1l setAdvFilterPolicy (u8 advFilterPolicy);

The parameters of the three APIs are the same as “bls_Il_setAdvParam”.

Return value ble sts t:

1) “bls_lI_setAdvChannelMap” and “bls_lI_setAdvFilterPolicy” will always return
“BLE_SUCCESS”.

2) “bls_II_setAdvinterval” will return “BLE_SUCCESS” or
“HCI_ERR_INVALID_HCI_CMD_PARAMS”.

3.2.8.8 bls_ll_setAdvEnable
Please refer to Core_v5.0 (Vol 2/Part E/ 7.8.9 “LE Set Advertising Enable Command”).

ble sts t bls_ll setAdvEnable (u8 en);

en”: 1 - Enable Advertising; O - Disable Advertising.

1) InIdle state, by enabling Advertising, Link Layer will enter Advertising state.

2) In Advertising state, by disabling Advertising, Link Layer will enter Idle state.

3) In other states, neither enabling or disabling Advertising does not affect Link Layer
state.

4) Dble sts t will always return “BLE_SUCCESS”.

3.2.8.9 bls_Il_setAdvDuration

ble sts t bls_1l1 setAdvDuration (u32 duration us, u8

duration _en);

After “bls_lI_setAdvParam” sets all adv parameters successfully, and the
“bls_II_setAdvEnable(1)” is called to start advertising, the API “bls_II_setAdvDuration”
can be called to set duration of adv event, so that advertising will be automatically
disabled after this duration.

“duration_en”: 1 - enable timing function; O - disable timing function. “duration_us”(unit:
us): The “duration_us” is valid only when the “duration_en” is set to 1.

The firmware starts timing from the set timing. When this duration expires, “AdvEnable”
becomes invalid, and advertising will stop. None Conn state will switch to Idle State. The
Link Layer event “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be triggered.

As specified in BLE Spec, the duration time of adv type
“ADV_TYPE_CONNECTABLE_DIRECTED_HIGH_DUTY” should equal or less than
1.28s. The duration time in telink SDK is fixed as 1.28s, i.e. advertising will stop after the
1.28s duration. Therefore, for this adv type, calling “bls_II_setAdvDuration” will be invalid.

The return value “ble_sts_t” is shown as below.

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

AN-19112700-E1 78 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Duration Time can’t be configured for
HCI_ERR_INVALID_HCI_CMD_PARAMS 0x12 | “ADV_TYPE_CONNECTABLE_DIR
ECTED_HIGH_DUTY".

When Adv Duratrion Time expires, advertising is stopped, if users want to re-configure
adv parameters (such as AdvType, Advinterval, AdvChannelMap), first the parameters
should be set in the callback function of the event
“‘BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, then the “bls_II_setAdvEnable(1)”
should be called to start new advertising.

To trigger the “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”, a special case should be
noted:

Suppose the “duration_us” is set as “2000000” (i.e. 2s).

< If Slave stays in advertising state, when adv time reaches the preset 2s timeout, the
“‘BLT_EV_FLAG_ADV_DURATION_TIMEOUT” will be triggered to execute
corresponding callback function.

< If Slave is connected with Master when adv time is less than the 2s timeout
(suppose adv time is 0.5s), the timeout timing is not cleared but cached in bottom
layer. When Slave stays in connection state for 1.5s (i.e. the preset 2s timeout
moment is reached), since Slave won’t check adv event timeout in connection state,
the callback of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT” won'’t be triggered.
When Slave stays in connection state for certain duration (e.g. 10s), then terminates
connection and returns to adv state, before it sends out the first adv packet, the
Stack will regard current time exceeds the preset 2s timeout and trigger the callback
of “BLT_EV_FLAG_ADV_DURATION_TIMEOUT”. In this case, the callback
triggering time largely exceeds the preset timeout moment.

3.2.8.10 blc_Il_setAdvCustomedChannel

The API below is used to customize special advertising channel/scanning channel, and it
only applies to some special applications such as BLE mesh. It's not recommended to
use this API for other conventional BLE applications.

void blc_11 setAdvCustomedChannel (u8 chnO, u8 chnl, u8 chn2);

chnO/chnl/chn2: customized channel. Default standard channel is 37/38/39. For
example, to set three advertising channels as 2420MHz, 2430MHz and 2450MHz, the
API below should be called:

blc_ll_setAdvCustomedChannel (8, 12, 22);

3.2.8.11 rf_set_power_level _index
5316 BLE SDK provides the API to set output power for BLE RF packet:
void rf_set _power_level index (int level);

For the setting of “level” values, the enum variable RF_TxPowerTypeDef in
“drivers/5316/rf_drv.h” can be referred to.

AN-19112700-E1 79 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The Tx power configured by this API is valid for both adv packets and conn packets, and
it can be set anywhere in the firmware. The actual Tx power is subject to the latest
setting.

3.2.8.12 bls_Il_terminateConnection
ble sts t bls 1l terminateConnection (u8 reason);

This API applies to BLE Slave device.

In order to actively terminate connection, this API can be invoked by APP Layer to send a
“Terminate” to Master in Link Layer. “reason” indicates the specified reason for
disconnection and it corresponds to the “ble_sts_t” defined in “ble_common.h”. Please
refer to Core_v5.0 (Vol 2/Part D/2 “Error Code Descriptions”).

If connection is not terminated due to system operation abnormity, generally APP layer
specifies the “reason” as:

HCI_ERR_REMOTE_USER_TERM_CONN =0x13

bls_11 terminateConnection (HCI_ERR_REMOTE_USER_TERM_CONN) ;

In bottom-layer stack of Telink BLE SDK, this API is invoked only in one case to actively
terminate connection: When data packets from peer device are decrypted, if an
authentication data MIC error is detected, the
“bls_II_terminateConnection(HCI_ERR_CONN_TERM_MIC_FAILURE)” will be called to
inform the peer device of the decryption error, and connection is terminated.

After Slave invokes this API to actively initiate disconnection, the event
“‘BLT_EV_FLAG_TERMINATE” will be triggered. The terminate reason in the callback
function of this event will be consistent with the reason manually configured in this API.

In Connection state Slave role, generally connection will be terminated successfully by
invoking this API; however, in some special cases, the APl may fail to terminate
connection, and the error reason will be indicated by the return value “vb1e sts t”. It's
recommended to check whether the return value is “BLE_SUCCESS” when this APl is
invoked by APP layer.

ble sts t Value ERR Reason

BLE_SUCCESS 0

Link Layer &-F3E Connection state Slave

HCI_ERR_CONN_NOT_ESTAB role

LISH Ox3E
Link Layer is not in Connection state Slave
role.

HCI_ERR_CONTROLLER BUS Controller busy (mass data are being

0x3A | transferred), this command cannot be

Y accepted for the moment.

AN-19112700-E1 80 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.2.8.13 Get Connection Parameters

The following APIs are used to obtain current connection parameters including
Connection Interval, Connection Latency and Connection Timeout (only apply to Slave
role).

ulo bls 11 getConnectionInterval (void);
ulo6 bls 11 getConnectionLatency (void);
ulé bls 11 getConnectionTimeout (void) ;

1) If return value is O, it indicates current Link Layer state is None Conn state without
connection parameters available.

2) The returned non-zero value indicates the corresponding parameter value.

< API “bls_lI_getConnectioninterval” returns the current conn interval, unit being
1.25ms. Suppose current conn interval is 10ms, the return value should be
10ms/1.25ms=8.

< API “bls_lI_getConnectionLatency” returns the actual Latency value.

< API “bls_lI_getConnectionTimeout” returns the current conn timeout, unit being
10ms. Suppose current conn timeout is 1000ms, the return value would be
1000ms/10ms=100.

3.2.8.14 blc_ll_getCurrentState

The API below is used to obtain current Link Layer state.

u8 blc_1ll getCurrentState(void);

The return values of this function are as below (5316 SDK does not support
BLS_LINK_STATE_SCAN and BLS_LINK_STATE_INIT)

#define BLS_LINK_STATE_IDLE 0

#define BLS_LINK_STATE_ADV BIT(O)
#define BLS_LINK_STATE_SCAN BIT(1)
#define BLS_LINK_STATE_INIT BIT(2)
#define BLS_LINK_STATE_CONN BIT(3)

3.2.8.15 blc_IlI_getLatestAvgRSSI

The API serves to obtain latest average RSSI of connected peer device after Link Layer
enters Slave role or Master role.

u8 blc 11 getLatestAvgRSSI (void)

The return value is u8-type rssi_raw, and the real RSSI should be: rssi_real = rssi_raw-
110. Suppose the return value is 50, rssi = -60 db.

AN-19112700-E1 81 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.2.8.16 Whitelist & Resolvinglist

As introduced above, “filter_policy” of Advertising involves Whitelist, and actual
operations depend on devices in Whitelist. Actually Whitelist contains two parts: Whitelist
and Resolvinglist.

Users can check whether address type of peer device is RPA (Resolvable Private
Address) via “peer_addr_type” and “peer_addr”. The API below can be called directly.

#define IS NON RESOLVABLE PRIVATE ADDR (type, addr)
((type)==BLE_ADDR RANDOM && (addr[5] & 0xCO) == 0x00)

Only non-RPA address can be stored in whitelist. In current SDK, whitelist can store up
to four devices.

#define MAX WHITE LIST SIZE 4

The API below is for whitelist reset:
ble sts t 11 whiteList_reset(void);
The return value is “BLE_SUCCESS".
ble sts t 11 whiteList_add(u8 type, u8 *addr):;

Add a device to whitelist and the return values are shown below:

ble sts_t Value ERR Reason

BLE_SUCCESS 0 Add success

HCI_ERR_MEM_CAP_EXCEE

DED 0x07 | Whitelist is full, add failure

ble sts t 11 whiteList delete (u8 type, u8 *addr);
Delete a device from whitelist and the return value is “BLE_SUCCESS”.

RPA (Resolvable Private Address) device needs to use Resolvinglist. To save RAM
space, “Resolvinglist” can store up to two devices only in current SDK.

#define MAX WHITE IRK LIST SIZE 2
The API below is for Resolvinglist reset:
ble sts t 1l resolvinglList reset (void);
Reset Resolvinglist, the return value is “BLE_SUCCESS”.

ble sts t 11 resolvingList_setAddrResolutionEnable (uS8
resolutionEn) ;

The API above is for address resolution. Resolvinglist must be enabled for address
resolution. It can be disabled if there is no need for address resolution.

ble sts t 11 resolvingList add(u8 peerIdAddrType, u8 *peerIdAddr,
u8 *peer irk, u8 *local irk);

peerldAddrType/ peerldAddr and peer-irk indicate identity address and irk declared by
peer device. These information will be stored into Flash during pairing encryption

AN-19112700-E1 82 Ver.1.0.0

“EM'CO"D"CTOR& Telink TLSR8232 BLE SDK Developer Handbook

process, and corresponding interfaces to obtain the info are available in SMP part.
“local_irk” is not processed in current SDK, and it can be set as “NULL".

ble sts t 11 resolvingList_delete (u8 peerIdAddrType, u8
*peerIdAddr) ;

This APl is used to delete a RPA device from Resolvinglist.

For usage of address filter based on Whitelist/Resolvinglist, please refer to
“feature_whitelist demo” in 5316 feature test. (In order to enable this demo set
‘FEATURE_TEST_MODE” to TEST_WHITELIST in “appconfig.h”)

3.2.9 2M PHY Supported

2M PHY is new Link layer feature available from BLE Core 5.0. Please refer to BLE Spec
Core_v5.0 (Vol 6/Part B/ Link Layer Specification) for details.

2M PHY interacts between the master controller and slave controller via three PDUs
(LL_PHY_REQ/LL_PHY_RSP/LL_PHY_UPDATE_IND) so as to set the transmission
rate of RF receiver finally. 2M PHY is only available after the connection is established, it
can not be used in disconnection. Both master and slave can start this process. If it is
started by master, master will send “LL_PHY_REQ PDU” and slave will send
“LL_PHY_RSP PDU” to respond master. During this process master and slave actually
exchange the PHYs they each support and prefer, then master will send
“‘LL_PHY_UPDATE_IND” and after “instance” reaches, master and slave will use their
new PHYs to transmit and receive data. If it is started by slave, slave will send
LL_PHY_REQ PDU, master will directly send “LL_PHY_UPDATE_IND to respond slave”
and after “instance” reaches, master and slave will use their new PHYs to transmit and
receive data after.

5316 BLE SDK supports 2M PHY. This function is enabled by default. APIs are provided
by 5316 BLE SDK for using 2M PHY. The following provides detailed descriptions of
each API. Please note that 5316 SDK only supports symmetric PHY which means the
settings of Rx PHY and Tx PHY must be the same.

To use 2M PHY, users must initialize 2M PHY feature. The initialization function must be
called to initialize 2M PHY. The prototype of the function is:

void blc_11 init2MPhy_feature(void)
This function initializes all the parameters for 2M PHY operation.

If it is master to start PHY Update, users only need to call the initialization function above
and BLE stack will do other work. If it is slave to start PHY Update, users need to call the
PHY set function to set PHY. The prototype of the PHY set function is:

ble sts t blc_1l1 setPhy(ul6 connHandle,
le_phy prefer_mask_t all_phys,
le_phy prefer_type_t tx_phys,
le_phy prefer_type_t rx_phys)

Descriptions of function parameters are as below:

AN-19112700-E1 83 Ver.1.0.0

/TELIN

SSEMICONDUCIOR) Telink TLSR8232 BLE SDK Developer Handbook

connHandle Connect handle. Use BLS_CONN_HANDLE by default.

all_phys Set if there are preferred Tx PHY and Rx PHY. An enum
variable.

PHY_ TRX PREFER is the common value. See the definitions
of le_phy_prefer_mask_t for other values.

tx_phys Preferred Tx PHY. An enum. Two optional values:
PHY_PREFER_1M and PHY_PREFER_2M. Whether this
parameter will be used depends on if there is preferred Tx PHY
in all_phys.

rx_phys Preferred Rx PHY. An enum. Two optional values:
PHY_PREFER_1M and PHY_PREFER_2M. Whether this
parameter will be used depends on if there is preferred Rx
PHY in all_phys.

If users want to do some custom operations after PHY Update is finished, users can
register callback function. The function below is used for the registration of the callback
function:

void bls_app_registerEventCallback(u8 e, blt _event callback t p)

Please see section 3.2.7 “Telink Defined Event” for the usage of this function.

3.2.10 Data Length Extension

Data Length Extension(DLE for short) is available from BLE core 4.2. For BLE versions
before BLE 4.2, a BLE packet can transmit 27Byte (ATT_MTU = 23) at most, and long
packets only can be transmitted in fragmented packets, thus the transmission efficiency
is low and it cannot meet actual demands. With DLE data of 251B can be transmitted at
once, which greatly improves the transmission efficiency and is very favorable for
applications of big data transmission, such as Audio and OTA.

DLE is a feature of link layer, please refer to Core_v5.0 (Vol 6/Part B/ Link Layer
Specification) for details.

DLEs use LL_LENGTH_REQ and LL_LENGTH_RSP to exchange the largest byte
numbers of transmitting and receiving they each support and finally the smallest byte
numbers among them are used as the the numbers of bytes for Tx and Rx. DLE is only
available in connection and unavailable in disconnection. DLE can be started by master
or slave.

5316 BLE SDK supports DLE and provides interfaces for users. If DLE is started by
master, users do not need to do any configuration, BLE stack will process automatically;
if it is started by slave, users need to call the function below after the connection is
established.

ble_sts_t blc_l1_exchangeDataLength(u8 opcode, ul6é maxTxOct)

After DLE is finished, BLT_EV_FLAG_DATA LENGTH_EXCHANGE will be reported.
Users can register callback to complete custom operations.

The appropriate sizes of Tx FIFO and Rx FIFO must be configured when using DLE.
A large size takes too much RAM space, while a small size cannot meet demands.

AN-19112700-E1 84 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Users should balance on it. There are requirements for configurations of Tx FIFO and
Rx FIFO. Misconfigurations will lead to unexpected errors. The following provides the
configurations and examples.

If users want to set the maximum transmission data length to 251 Bytes, Tx FIFO
should be set as 251 + 12 = 263 Bytes, considering 4-byte alignment, Tx FIFO
should be set to 264 Bytes finally.

If users want to set the maximum receiving data length to 251 Bytes, Rx FIFO should
be set as 251 + 28 = 279 Bytes, considering 16-byte alignment, Tx FIFO should be
set to 288 Bytes finally.

Conclusion:
Tx FIFO size = actual maximum Payload size of transmission + 12 (4-byte aligned)

Rx FIFO size = actual maximum payload size of receiving + 28 (16-byte aligned)

3.3 L2CAP

Logical Link Control and Adaptation Protocol, L2CAP for short, connects the upper APP
layer and the lower Controller layer. By acting as an adaptor between the Host and the
Controller, the L2ZCAP makes data processing details of the Controller become negligible
to the upper-layer application operations.

The L2CAP layer of BLE is a simplified version of classical Bluetooth. In basic mode, it
does not implement segmentation and re-assembly, has no involvement of flow control
and re-transmission, and only uses fixed channels for communication.

The figure below shows simple L2CAP structure: Data of the APP layer are sent in
packets to the BLE Controller. The BLE Controller assembles the received data into
different CID data and report them to the Host layer.

AN-19112700-E1 85 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
ATT SMP
CID = 0x0004 CID = 0x0006

L2CAP Signaling |
|

L2CAP —

| CID = 0x0005
| o o = 1
LE-U Logical Link
LE Controller
Attribute Protocol Attribute Protocol
A N
Sbu Sbu
A\ 4 A 4
L2CAP o L2CAP PDU - L2CAP
Maximum size depends on MTU
Device A Device B

As specified in BLE Spec, L2CAP is mainly used for data transfer between Controller and
Host. Most work is finished in stack bottom layer with little involvement of the user. Users
only need to call the following APIs to set correspondingly.

3.3.1 Register L2CAP Data Processing Function

In BLE SDK architecture, Controller transfers data with Host via HCI. Data from HCI to
Host will be processed in L2CAP layer first. The APl below serves to register this
processing function.

void blc 1l2cap_register handler (void *p);

In BLE Slave applications such as 5316 remote/5316 module, the function to process
data of Controller in L2CAP layer of SDK is shown as below:

int blc_l2cap packet_receive (ul6 connHandle, u8 * p);

This function is already implemented in stack, which it will analyze the received data and
transfer the data to ATT or SMP.

Initialization:
blc_l2cap register handler (blc_l2cap_packet receive);

In 5316 hci, only Slave controller is implemented. Function “blc_hci_sendACLData2Host”
serves to transmit data of controller to BLE Host device via hardware interface such as
UART.

intblc_hci_sendACLData2Host (ul6 handle, u8 *p)

Initialization:

blc 12cap_register_handler (blc_hci_sendACLData2Host) ;

AN-19112700-E1 86 Ver.1.0.0

tus

/TELIN
"EM'COND”‘TOR& Telink TLSR8232 BLE SDK Developer Handbook

3.3.2 Update Connection Parameters

3.3.2.1 Slave Requests for Connection Parameter Update

In BLE stack, Slave can actively apply for a new set of connection parameters by sending
command “CONNECTION PARAMETER UPDATE REQUEST” to Master in L2CAP
layer. The figure below shows the command format. Please refer to Core_v5.0 (Vol
3/Part A/ 4.20 “CONNECTION PARAMETER UPDATE REQUEST").

LSB octet 0 octet 1 octet 2 octet 3 MSB
Code=0x12| |dentifier Length
Interval Min Interval Max

Slave Latency Timeout Multiplier

Figure 4.22: Connection Parameters Update Request Packet

Figure 3-25 Connection Para Update Req Format in BLE Stack

5316 BLE SDK provides an APl in L2CAP layer for Slave to send command
“CONNECTION PARAMETER UPDATE REQUEST” to Master and actively apply for a
new set of connection parameters.

void bls_l2cap requestConnParamUpdate (ul6 min interval,
ul6 max_ interval,

ul6é latency, ul6 timeout);

The four parameters of this API correspond to the parameters in the “data” field of the
“CONNECTION PARAMETER UPDATE REQUEST". The “min_interval” and
“‘max_interval” are in a unit of 1.25ms (e.g. for 9ms connection interval, the value should
be 10ms); the “timeout” is in a unit of 10ms (e.g. for 100s timeout, the value should be
1000ms).

Application example: Slave requests for new connection parameters when connection is
established.

void task_connect (u8 e, u8 *p)
{
//interval=7.5ms latency=99 timeout=4s

bls 1l2cap requestConnParamUpdate (6, 6, 99, 400);

Data Type
L2CAP-5

Data Header

L2CAP Header

LLID NESH SN MD PDU-Length [|L2CAP-Length Chanld ||Code

2

1

0 0 16

0x000C 0x0005 ||0x12

5IG Pkt Header
Id Data-Length
0x01 0x0008

SIG_Connection_Param_Update_Req

0x0006 0x0063 0x0150

IntervalMin IntervalMax Slavelatency TimecutMultiplier
0x0006

CRC
0x28D0¢

tus

Data Type
L2CAP-5

Data Header

L2CAP Header

LLID NESHN SN MD FPDU-Length [|L2CAP-Length Chanld ||Code

2

1

1 0 10

0x0006 0x0005 ||0x13

SIG Pkt Header

Id Data-Length ||[Result
0x0000

0x01 0x0002

SIG_Connection_Param_Update_Rsp RSSI

EE (dBm)

0x2DE483 || -38

FCS
oK |

Data Header

P I |

I['Rsst |l

I ror

Figure 3-26 BLE Sniffer Packet Sample: conn para Update Request & Response

AN-19112700-E1 87 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.3.2.2 Master Responds to Connection Parameter Update Request

After Master receives the “CONNECTION PARAMETER UPDATE REQUEST” command
from Slave, it will respond with command “CONNECTION PARAMETER UPDATE
RESPONSE”. Please refer to Core_v5.0 (Vol 3/Part A/ 4.20 “CONNECTION
PARAMETER UPDATE RESPONSE").

The figure below shows the command format: if “result” is “0x0000”, it indicates the
request command is accepted; if “result” is “0x0001”, it indicates the request command is
rejected. Whether actual Android/iOS device will accept or reject the connection
parameter update request is determined by corresponding BLE Master. User can refer to
Master compatibility test.

As shown in Figure 3-26, Master accepts the request.

LSB octet0 octet 1 octet 2 octet 3 MSB

Code=0x13| Identifier Length

Result

Figure 4.23: Connection Parameters Update Response Packef

The data field is:

« Result (2 octets)

The result field indicates the response to the Connection Parameter Update
Request. The result value of 0x0000 indicates that the LE master Host has
accepted the connection parameters while 0x0001 indicates that the LE
master Host has rejected the connection parameters.

Result Description

0x0000 Connection Parameters accepted
0x0001 Connection Parameters rejected
Other Reserved

Figure 3-27 conn para update rsp Format in BLE Stack

The following shows demo code to process connection parameter update request of
Slave in Telink 826x master kma dongle.

AN-19112700-E1 88 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
el=ze if (ptrl2cap->chanld == L2CAP CID SIG CHANMNEL) //=signal
1
if (ptrl2cap->opcode == L2CAP CHMD CONN_UFPD PARA REQ) f/fslave send conn param update regqg on l1l2cap
i
rf packet_l2cap connParalUpReq t * req = (rf_packet_l2cap connParaUpReq t *)ptrL2cap;
u32 interval us = reqg->min interval*1250; //1.25ms unit
u32 timeout us = reg->timeout*10000; //10m= unit
u32 long suspend us = interval us * (reg->latency+l):
terval < 200ms
long suspend < 118
nterval * (latency +1)*2 <= timeout
if(interval us < 200000 && long suspend us < 20000000 && (long suspend us*2<=timeout_wus))
{
n master host accept slave's conn param update req, should send a conn param update re¢
th CCONN_PARAM UPDATE ACCEPT; if not agcpet,should send CONN_PARERM UPDATE REJECT
blc l2cap SendConnParamUpdateResponse (current connHandle, CONN PARAM UPDATE ACCEPT):; //se:
f/if accept, master host should mark this, add will send update conn param reg on link lar
f/set a flag here, then send update conn param reqg in mainloop
host_update conn param req = clock time() | 1 ; //in case zero value
host_update conn min = reqg->min interval: //backup update param
host_update_conn_latency = reg->latency;
host_update conn_ timeout = reg->timeout:
¥
else
{
blc_12cap SendConnParamlUpdateResponse (current connHandle, CONN PARAM DUPDATE REJECT): //se:
H

}

After “L2CAP_CMD_CONN_UPD_PARA_REQ’ is received in
“L2CAP_CID_SIG_CHANNEL”, it will read interval_min (used as eventual interval),
supervision timeout and long suspend time (interval * (latency +1)), and check the
rationality of these data. If interval < 200ms, long suspend time<20s and supervision
timeout >= 2* long suspend time, this request will be accepted; otherwise this request will
be rejected. User can modify as needed based on this simple demo design.

No matter whether parameter request of Slave is accepted, the API below can be called
to respond to this request.

void blc_l2cap_SendConnParamUpdateResponse(ul6 connHandle,

int result);

“connHandle” indicates current connection ID. “result” has two options, “accept” and
“reject”.

typedef enum{
CONN_ PARAM UPDATE ACCEPT = 0x0000,
CONN_ PARAM UPDATE REJECT = 0x0001,

}conn para up rsp;

If 826x Master accepts request of Slave, it must send an update cmd to Controller via the
API “blm_II_updateConnection” within certain duration. In demo code,
“host_update_conn_param_req” is used as mark, and a 50ms delay is set in mainloop to
initiate this update.

AN-19112700-E1 89 Ver.1.0.0

N
"‘-"""COND"CTOR& Telink TLSR8232 BLE SDK Developer Handbook

/fproc master update
f/at least 50ms later and make sure smp/sdp is finished
if(host_update conn param req && clock time exceed(host_update conn param req, 50000) && 'app host_smp =dp pe
i
host_update_conn param reg = 0;

if(blc 11 getCurrentState() = BLS LINK STATE CONN){ //still in connection state
blm 11 updateConnection (current connHandle,
host update conn min, host update conn min, host update conn latency, host update conn timeou
0, 0):

3.3.2.3 Master Updates Connection Parameters in Link Layer

After Master responds with “conn para update rsp” to accept the “conn para update req”
from Slave, Master will send a “LL_CONNECTION_UPDATE_REQ” command in Link

Layer.

] Data Header

s|DataT¥Pe ||\ /1D NESW SN MD EDU-Length
Control 3 1 1 a 12

N Data Header RSSI
Data Ty CRC FCs

1 YP® |ILID NESN SN MD PDU-Length (dBm)
Erpry PDO| 1 0 1 o 0 oxeFEsor || o || ox

Figure 3-28 BLE Sniffer Packet Sample: Il conn update req

Slave will mark the final parameter as the instant value of Master after it receives the
update request. When the instant value of Slave reaches this value, connection
parameters are updated, and the callback of the event
“‘BLT_EV_FLAG_CONN_PARA _UPDATE” is triggered.

The “instant” indicates connection event count value maintained by Master and Slave,
and it ranges from 0x0000 to Oxffff. During a connection, Master and Slave should always
have consistent “instant” value. When Master sends “conn_req” and establishes
connection with Slave, Master switches state from scanning to connection, and clears the
“instant” of Master to “0”. When Slave receives the “conn_req”, it switches state from
advertising to connection, and clears the instant of Slave to “0”. Each connection packet
of Master and Slave is a connection event. For the first connection event after the
“conn_req”, the instant value is “1”; for the second connection event, the instant value is
2, and so on.

When Master sends a “LL_CONNECTION_UPDATE_REQ”, the final parameter “instant”
indicates during the connection event marked with “instant”, Master will use the values
corresponding to the former connection parameters of the
“LL_CONNECTION_UPDATE_REQ” packet. After the
“‘LL_CONNECTION_UPDATE_REQ’ is received, the new connection parameters will be
used during the connection event when the instant of Slave equals the declared instant of
Master, thus Slave and Master can finish switch of connection parameters
synchronously.

3.4 ATT & GATT

3.4.1 GATT Basic Unit “Attribute”

GATT defines two roles: Server and Client. In 826x BLE SDK, Slave is Server, and
corresponding Android/iOS device is Client. Server needs to supply multiple Services for
Client to access.

Each Service of GATT consists of multiple Attributes, and each Attribute contains certain
information.

AN-19112700-E1 90 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

GATT Server

Service

Attribute

Attribute

Service

Attribute

Attribute

Attribute

Figure 3-29 GATT Service Containing Attribute Group

The basic contents and properties of an Attribute are shown as below:

1) Attribute Type: UUID
The UUID is used to identify Attribute type, and its total length is 16 bytes. In BLE
standard protocol, the UUID length is defined as two bytes, since Master devices
follow the same method to transform 2-byte UUID into 16 bytes.
When standard 2-byte UUID is directly used, Master should know device types
indicated by various UUIDs. 5316 BLE stack defines some standard UUIDs in
“stack/ble/service/hids.h” and “stack/ble/uuid.h”.
Telink proprietary profiles (OTA, etc.) are not supported in standard Bluetooth. The
16-byte proprietary device UUIDs are defined in “stack/ble/uuid.h”.

2) Attribute Handle
Slave supports multiple Attributes which compose an Attribute Table. In Attribute
Table, each Attribute is identified by an Attribute Handle value. After connection is
established, Master will analyze and obtain the Attribute Table of Slave via “Service
Discovery” process, then it can identify Attribute data via the Attribute Handle during
data transfer.

3) Attribute Value
Attribute Value corresponding to each Attribute is used as data of request, response,
notification indication and confirm. In 5316 BLE stack, Attribute Value is indicated by
one pointer and the length of the area pointed by the pointer.

AN-19112700-E1 91 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.4.2 Attribute and ATT Table

To implement GATT Service on Slave, an Attribute Table is defined in 5316 BLE SDK
and it consists of multiple basic Attributes. Attribute definition is shown as below.

typedef struct attribute
{

ul6 attNum;
u8 perm;
u8 uuidLen;
u32 attrlLen; //4 bytes aligned
u8* uuid;
u8* pAttrvValue;
att readwrite callback t w;
att readwrite callback t r;
} attribute t;

Attribute Table code is available in “app_att.c”, as shown below:

const attribute_t my_Attributes[] = {

{ATT_END H - 1, 9,0,0,8,8}, // total num of attribute

// @001 - BEOT gep

{7,ATT_PERMISSIONS READ,2,2,(ud™)(&my_ primaryServiceUUID), (u8*)(&my gapServiceUUID), @},

{@,ATT_PERMISSIONS READ,2,sizeof(my_devNameCharVal), (u8*)(&my characterUUID), (ug*)(my_devNameCharval), @},
1@,ATT_PERMISSIONS READ,2,sizeof(my_devName), (ud*)(&my devNameUUID), (ud*)(my_devName), @},

{@,ATT_PERMISSIONS READ,2,sizeof(my_appearanceCharVal), (us*)(&my_characterUUID), (uB*)(my_appearanceCharval), @},
1@,ATT_PERMISSIONS READ,2,sizeof (my_appearance), (u8*)(&my_appearanceUIID), (ud*) (&my_appearance), @},
{@,ATT_PERMISSIONS_READ,2,sizeof(my_periConnParamCharval), (ug*) (&my_characterUUID), (ud*) (my_periCennParamCharval), 8]
{@,ATT_PERMISSIONS READ,2,sizeof (my_ periConnParameters), (u8*)(&my_periCennParamUUID), (u8*)(&my_periCennParameters), @},

// eees - @BBb gatt

14,ATT_PERMISSIONS READ,2,2,(ud*)(&my_primaryServiceUUID), (ud*)(&my_gattServiceUUID), @},
{@,ATT_PERMISSIONS_READ,2,sizeof(my_serviceChangeCharVal), (ug*) (&my_characterUUID), (ud*) (my_serviceChangeCharval), 8]
{@,ATT_PERMISSIONS READ,2,sizeof (serviceChangeVal), (ug*)(&serviceChangeUIID), (ug*)(&serviceChangeval), @},
{1@,ATT_PERMISSIONS RDWR,2,sizeof (serviceChangeCCC),(u8™)(&clientCharacterCfgUUID), (us*)(serviceChangeCCC), @},

// @@Bc - @@Be device Information Service

13,ATT_PERMISSIONS READ,2,2,(ud*)(&my_primaryServiceUUID), (ud*)(&my_devServicelUID), @},
{@,ATT_PERMISSIONS_READ,2,sizeof(my_PnCharval), (ug*)(&my_characterulID), (ud*)(my_PnCharval), @},
{@,ATT_PERMISSIONS READ,2,sizeof (my PnPtrs), (ud*)(&my PnPUUID), (u8*)(my_PnPtrs), @},

/ 4. HID Service ///

epef
//{27, ATT_PERMISSIONS READ,2,2,(us*)(&my_primaryServiceUUID), (u8*)(&my_hidServiceUUID), @},
{HID CONTROL POINT DP H - HID PS5 H + 1, ATT_PERMISSIONS_READ,2,2,(u8*)(&my_primaryServiceUUID), (uB*)(&my_hidServiceUUID)

'/ eele include battery service
{@,ATT_PERMISSIONS READ,2,sizeof(include), (us*)(&hidIncludeUUID), (ud*)(include), @},

Figure 3-30 5316 BLE SDK Attribute Table
Please note that the key word “const” is added to Attribute Table definition:
const attribute_t my_Attributes[] ={ ... };

By adding the “const”, the compiler will store the array data to Flash rather than RAM,
while all contents of the Attribute Table defined in Flash are read only and not modifiable.

3.4.2.1 attNum

The “attNum” supports two functions.

AN-19112700-E1 92 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

1) The “attNum” can be used to indicate the number of valid Attributes in current
Attribute Table, i.e. the maximum Attribute Handle value. This number is only used in
the invalid Attribute item 0 of Attribute Table array.

{49,0,0,0,0,0},//ATT_END _H—-1=49in “5316_ble remote”
“attNum = 49” indicates there are 49 valid Attributes in current Attribute Table.
In BLE, Attribute Handle value starts from 0x0001 with increment step of 1, while the
array index starts from 0. When this virtual Attribute is added to the Attribute Table,
each Attribute index equals its Attribute Handle value. After the Attribute Table is
defined, Attribute Handle value of an Attribute can be obtained by counting its index
in current Attribute Table array.
The final index is the number of valid Attributes (i.e. attNum) in current Attribute
Table. In current SDK, the attNum is set as 49; if user adds or deletes any Attribute,
the attNum needs to be modified correspondingly.

2) The “attNum” can also be used to specify Attributes constituting current Service.
The UUID of the first Attribute for each Service must be
“GATT_UUID_PRIMARY_SERVICE (0x2800)”; the first Attribute of a Service sets
“attNum” and it indicates following “attNum” Attributes constitute current Service.

As shown in Figure 3-30, for the gap service, the Attribute with UUID of
“GATT_UUID_PRIMARY_SERVICE” sets the “attNum” as 7, it indicates the seven
Attributes from Attribute Handle 1 to Attribute Handle 7 constitute the gap service.
Similarly, for the HID service, the “attNum?” of the first Attribute is set as 27, and it
indicates the following 27 Attributes constitute the HID service.

Except for Attribute item 0 and the first Attribute of each Service, attNum values of all
Attributes must be set as 0.

3.4.2.2 perm

The “perm” is short for “permission” and it serves to specify access permission of current
Attribute by Client.

The “perm” of each Attribute is configurable as one or combination of following values.

#define ATT PERMISSIONS READ 0x01
#define ATT PERMISSIONS WRITE 0x02
#define ATT PERMISSIONS AUTHEN READ 0x04
#define ATT PERMISSIONS AUTHEN WRITE 0x08
#define ATT PERMISSIONS AUTHOR READ 0x10
#define ATT PERMISSIONS AUTHOR WRITE 0x20
#define ATT PERMISSIONS ENCRYPT READ 0x40
#define ATT PERMISSIONS ENCRYPT WRITE 0x80

AN-19112700-E1 93 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.4.2.3 uuid, uuidLen

As introduced above, UUID supports two types: BLE standard 2-byte UUID, and Telink
proprietary 16-byte UUID. The “uuid” and “uuidLen” can be used to describe the two
UUID types simultaneously.

The “uuid” is an u8-type pointer, and “uuidLen” specifies current UUID length, i.e. the
uuidLen bytes starting from the pointer are current UUID. Since Attribute Table and all
UUIDs are stored in Flash, the “uuid” is a pointer pointing to Flash.

1) BLE standard 2-byte UUID:
For example, for Attribute “devNameCharacter” with Attribute Handle of 2, related
code is shown as below:
#define GATT_UUID_CHARACTER 0x2803
static const ul6 my_characterUUID = GATT_UUID_CHARACTER;
{0, 1, 2, sizeof(my_devNameCharacter),(u8*)(&my_characteruulD),
(u8*)(&my_devNameCharacter), 0,0},
“UUID=0x2803" indicates “character” in BLE and the “uuid” points to the address of
“my_characterUUID” in Flash. The “uuidLen” is 2. When Master reads this Attribute,
the UUID would be “0x2803”.
2) Telink proprietary 16-byte UUID :
For example, for Attribute of OTA, related code is shown as below:

#define TELINK_SPP_DATA OTA

{0x12,0x2B,0x0d,0x0C,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0X03,0x02,
0x01,0x00}

const u8 my_OtaUUID[16] = TELINK_SPP_DATA_OTA;
{0,ATT_PERMISSIONS_RDWR,16,sizeof(my_OtaData), (u8*)(&my_OtauUUID),
(&my_OtaData), &otaWrite, &otaRead},

The “uuid” points to the address of “my_OtaUUID” in Flash, and the “uuidLen” is 16.
When Master reads this Attribute, the UUID would be
“0x000102030405060708090a0b0c0d2b12”.

3.4.2.4 pAttrValue, attrLen

Each Attribute corresponds to an Attribute Value. The “pAttrValue” is an u8-type pointer
which points to starting address of Attribute Value in RAM/Flash, while the “attrLen”
specifies the data length. When Master reads the Attribute Value of certain Attribute from
Slave, the “attrLen” bytes of data starting from the area (RAM/Flash) pointed by the
“pAttrValue” will be read by 5316 BLE SDK to Master.

Since UUID is read only, the “uuid” is a pointer pointing to Flash; while Attribute Value
may involve write operation into RAM, so the “pAttrValue” may points to RAM or Flash.

For Attribute hid Information with Attribute Handle being 35, related code is as shown
below

const u8 hidIinformation[] =

{

AN-19112700-E1 94 Ver.1.0.0

/TELIN
'55"""?0”"“"0"& Telink TLSR8232 BLE SDK Developer Handbook

U16_LO(0x0111), U16_HI(0x0111), // bcdHID (USB HID version),

0x11,0x01
0x00, // bCountryCode
0x01 /I Flags
h

{0, 2, sizeof(hidIinformation), sizeof(hidinformation), (u8*)(&hidinformationUUID),
(u8*)(hidInformation), 0,0},

In practical application, the key word “const” can be used to store the read-only 4-byte
hid information “0x01 0x00 0x01 0x11” into Flash. The “pAttrValue” points to the starting
address of hidinformation in Flash, while the “attrLen” is the actual length of
hidInformation. When Master reads this Attribute, “0x01000111” will be returned to
Master correspondingly.

Figure 3-31 shows a packet example captured by BLE sniffer when Master reads this
Attribute. Master uses the “ATT_Read_Req” command to set the target AttHandle as
0x23 (35), corresponding to the hid information in Attribute Table of SDK.

us || Data Type

L2CRP-5

Data Header
LLID NESN SN MD PDU-Length
2 1 1] 1] 11

Security Enabled

Yes

L2CAP Header
L2CAP-Length Chanld

0x0003 0x0004

ATT_Read_Req
Opcode AttHandle

0x0R 0x0023

CRC
0x&65CCCS

RSSI
(dBm)

Data Type

Data Header
LLID NESN SN MD FPDU-Length

CRC RS5SI

FCS

Security Enabled (dBm)

Empty POU || 1 1 1 0 0 Yes oxzns7eR || 0 || ox
" Data Header _ RSSI
; Data Ty S Enabled CRC FCS
us YPe ||I11D NESN SN MD POU-Length | ScCuriy Enable (dBm)
Empty POU || 1 0 1 0 0 Yes oxz851B9 || o0 || ox
] Data Header L2CAP Header ATT_Read_Rsp RSSI

us || Data Type Security Enabled CRC

LLID HNESN SN MD FDU-Length
L2CRP-5| 2 0 0 0 13

L2CAP-Length Chanld
0x0005 0x0004

Opcode AttValue
0x0B 11 01 00 01

(dBm)

Yes 0xSBF&L0 0

0K
Figure 3-31 BLE Sniffer Packet Sample When Master Reads hidInformation

For Attribute “battery value” with Attribute Handle being 40, related code is as shown

below:
ud my_batVal[l] ={99}

{0,1,2,1,(u8*)(&my_batCharUuID), (u8*)(my_batVal), 0},

In practical application, the “my_batVal” indicates current battery level and it will be
updated according to ADC sampling result; then Slave will actively notify or Master will
actively read to transfer the “my_batVal” to Master. The starting address of the
“‘my_batVal” stored in RAM will be pointed by the “pAttrValue”.

3.4.2.5 Callback Function w
The callback function w is a write function, its prototype is:
typedef int (*att_readwrite_callback_t)(void* p);

User must follow the format above to define callback write function. The callback function
w is optional, i.e. for an Attribute, user can select whether to set the callback write
function as needed (null pointer O indicates not setting callback write function).

The trigger condition for callback function w is: When Slave receives any Attribute PDU
with Attribute Opcode as shown below, Slave will check whether the callback function w
is set.

1) opcode = 0x12, Write Request, see Core_v5.0.

AN-19112700-E1 95 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

2) opcode = 0x52, Write Command, see Core_v5.0.

After Slave receives a write command above, if the callback function w is not set, Slave
will automatically write the area pointed by the “pAttrValue” with the value sent from
Master, and the data length equals the “I2capLen” in Master packet format minus 3; if the
callback function w is set, Slave will execute user-defined callback function w after it
receives the write command, rather than writing data into the area pointed by the
“pAttrValue”. Note: Only one of the two write operations is allowed to take effect.

By setting the callback function w, user can process Write Request and Write Command
in ATT layer of Master. If the callback function w is not set, user needs to evaluate
whether the area pointed by “pAttrValue” can process the command (e.g. If the
“pAttrValue” points to Flash, write operation is not allowed; or if the “attrLen” is not long
enough for Master write operation, some data will be modified unexpectedly.).

3.4.5.1 Write Request

The Wiite Reguest is used to request the server to write the value of an attri-
bute and acknowledge that this has been achieved in a Wrife Response.

Parameter Size (octets) Description
Aftribute Opcode 1 0x12 = Write Request
Attribute Handle = The handle of the attribute fo be
wiritten
Aftribute Value 0 to (ATT_MTU-3) &e value to be written fo the atiri-
fe

Tahla 2 98- Crrmad nf Wirtn Domnncd

Figure 3-32 Write Request in BLE Stack

3.4.5.3 Write Command

The Wiite Command is used to request the server to write the value of an attri-
bute, typically into a control-point attribute.

Parameter Size (octets) Description
Atfribute Opcode 1 052 = Write Command
Attribute Handle 2 The handle of the attribute to be
set
Aftribute Value 0to (ATT_MTU-3) ge value of be written fo the atir-
te

T ke b ek o Bl Aihin S e o e]

Figure 3-33 Write Command in BLE Stack

[Il]

The void-type pointer “p” of the callback function w points to the value of Master write

[Il]

command. Actually “p” points to a memory area, the value of which is shown as the
following structure.

typedef struct({
u32 dma_ len;
u8 type;
u8 rf len;
ulé6 12cap; //12cap_ length

ul6 chanid;

AN-19112700-E1 96 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
u8 att; //opcode
u8 hl; //low byte of Atthandle
u8 hh; //high byte of Atthandle

u8 dat[20];

}rf packet att data t;

“p” points to “dma_len”, valid length of data is I12cap minus 3, and the first valid data is
pw->dat[0].

int my WriteCallback (void *p)
{
rf packet att data t *pw = (rf packet att data t *)p;
int len = pw->12cap - 3;
//add your code
//valid data is pw->dat[0] ~ pw->dat[len-1]
return 1;
}

The structure “rf_packet_att_data_t” above is available in “stack/ble/ble_common.h”.

3.4.2.6 Callback Function r
The callback function r is a read function, its prototype is:
typedef int (*att_readwrite_callback _t)(void* p);

Users must follow the format above to define callback read function. The callback
function r is also optional, i.e. for an Attribute, user can select whether to set the callback
read function as needed (null pointer 0 indicates not setting callback read function).

The trigger condition for callback function r is: When Slave receives any Attribute PDU
with Attribute Opcode as shown below, Slave will check whether the callback function r is
set.

1) opcode = 0x0A, Read Request, see Core_v5.0.
2) opcode = 0x0C, Read Blob Request, see Core_v5.0.

After Slave receives a read command above,

1) If the callback read function is set, Slave will execute this function, and determine
whether to respond with “Read Response/Read Blob Response” according to the
return value of this function.

a) If the return value is 1, Slave won’t respond with “Read Response/Read Blob
Response” to Master.

b) If the return value is not 1, Slave will automatically read “attrLen” bytes of data
from the area pointed by the “pAttrValue”, and the data will be responded to
Master via “Read Response/Read Blob Response”.

AN-19112700-E1 97 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

2) If the callback read function is not set, Slave will automatically read “attrLen” bytes of
data from the area pointed by the “pAttrValue”, and the data will be responded to
Master via “Read Response/Read Blob Response”.

Therefore, after a Read Request/Read Blob Request is received from Master, if it's
needed to modify the content of Read Response/Read Blob Response, user can
register corresponding callback function r, modify contents in RAM pointed by the
“pAttrValue” in this callback function, and the return value must be 0.

3.4.2.7 Attribute Table Layout

Figure 3-34 shows Service/Attribute layout based on Attribute Table. The “atthum” of the
first Attribute indicates the number of valid Attributes in current ATT Table; the remaining
Attributes are assigned to different Services, the first Attribute of each Service is the
“declaration”, and the following “attnum” Attributes constitute current Service. Actually the
first item of each Service is a Primary Service.

const ulé my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;
#define GATT_UUID_PRIMARY_SERVICE 0x2800 /"< Primary Service

AN-19112700-E1 98 Ver.1.0.0

"EM'CONDUCTORb Telink TLSR8232 BLE SDK Developer Handbook

Index Total number of attribute items that excludes itself.

[1

Index Servicel declaration attribute and it has N attributes
10 including itself service declaration attribute.«

Index Attribute#1+

2+

Index Attribute#2+

3~

IndexN+ Attribute#N-1+

Service? declaration attribute and it has M attributes

Index

N+1o including itself service declaration attribute.

Index Attribute#f1.

N+2+

Index Attribute#2+

N+3+
L
L
[
L
L
"

Index- Attribute#M-1+

N+M-

Figure 3-34 Service/Attribute Layout

3.4.2.8 ATT Table Initialization

GATT & ATT initialization only needs to transfer the pointer of Attribute Table in APP
layer to protocol stack, and the API is:

void bls att_setAttributeTable (u8 *p);

p” is the pointer of Attribute Table.

3.4.3 Attribute PDU & GATT API

As required by BLE Spec, 5316 BLE SDK currently supports the following Attribute PDU
types.

1) Requests: Data request sent from Client to Server.

AN-19112700-E1 99 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

2) Responses: Data response sent by Server after it receives request from Client.
3) Commands: Command sent from Client to Server.

4) Notifications: Data sent from Server to Client.

5) Indications: Data sent from Server to Client.

6) Confirmations: Confirmation sent from Client after it receives data from Server.

The subsections below will introduce all ATT PDUs in ATT layer. Please refer to structure
of Attribute and Attribute Table to help understanding.

3.4.3.1 Read by Group Type Request, Read by Group Type Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.4.9 and 3.4.4.10) for details of Read by
Group Type Request and Read by Group Type Response.

The “Read by Group Type Request” command sent by Master specifies starting and
ending attHandle, as well as attGroupType. After the request is received, Slave will check
through current Attribute Table according to the specified starting and ending attHandle,
and find the Attribute Group that matches the specified attGroupType. Then Slave will
respond to Master with Attribute Group information via the “Read by Group Type
Response” command.

— Data Header L2CAP Header ATT_Read_By_Group_Type_Req - RSt | oo
Lr LLID NESN SN MD FODU-Length |[|L2CAP-Length Chanld ||Cpcode StartingHandle EndingHandle AttGrouplype (dBm)
L2CRP-5 2 0 1 0 11 0x0007 0x0004 |/ 0x10 0x0001 OxXFEFF 00 28 0xE89867B || -38 OK
Data Header RSSI
Data Ty CRC FCS
YP° |lLLID MESN S¥ MD EDU-Length (d8m)
Empty PDU|| 1 0 0 0 0 OxAE00DS || -38 OK
Data Header L2CAP Header ATT_Read_By_Group_Type_Rsp RSSI
LIS LLID NESN SN MD PDU-Length |[L2CAP-Length Chanld ||Opcode Length AttData EE {dBm) FEE
L2CRP-5 | 2 0 a 1] 24 0x0014 0x0004 §0x1l 0x0& 01 00 07 00 00 18 08 00 OA 00 OR 18 OB 00 25 00 12 18| OxS8FCET| -38
Data Type Data Header L2CAP Header ATT_Read_By_Group_Type_Req CRC RSSI FCs
YP€|I1TD NESN SN MD PDU-Length ||L2CAP Length Chanld ||Opcode StartingHandle EndingHandle RttGroupType (dBm)
L2CRE-5 | 2 1 a a 11 0x0007 0x0004] 0x10 0x0026 OXFFFE 00 28 0x5R6275 |[_-38 0K
Data Header RSSI
Data Ty CRC FCS
YP® |ILITD NESN SN MD PDU-Length (dBm)
Empty PDU|[1 1 1 a 0 0xAEOQBAD || -38 OK
Data Header RSSI
[EATEEE LLID NESN SN MD EPEDU-Length G {(dBm) Fcs
Empty PDU|[1 0 1 a 0 O0XREOD73 || -38 OK
Data Header L2CAP Header ATT_Read_By_Group_Type_Rsp RSSI
T LLID NESN SN MD PDU-Length |[L2CAP-Length Chanld ||Opcode Length AttData €= (dBm} e
L2CRE-5 | 2 [1] a a 12 0x0008 0x0004 J0x11 0x06 26 00 28 00 OF 18 || 0x158866 || -38 QK
Data Type Data Header L2CAP Header ATT_Read_By_Group_Type_Req CRC RSSI FCs
YP®|I1ID NESN SN MD PDU-Length ||L2CAP-Length Chanld ||Cpcode StartingHandle EndingHandle AttGroupType (dBm)
L2CRP-5 | 2 1 a 1] 11 0x0007 0x0004 §0x10 0x0029 OXFFFE 00 28 0x055C4D || -38 OK
Data Header RSSI
e LLID NESN SN MD EPEDU-Length EmE (dBm) FES
Empty BDU|[1 1 1 a [1] OxREOBRO || -38 OK
Data Header RSSI
(=T LLID NESN SN MD PDU-Length CRC (dBm) T
Empty PDU|| 1 0 1 0 0 OxAEOD73 || -38 OK
Data Header L2CAP Header ATT_Read_By_Group_Type_Rsp RSSI
Datalype |- 1n wesw sw mp PDU-Length [[L2CAP-Length Chanld |[Opcode Length AttData e {dBm) || €%
L2CRP-5 | 2 0 a 1] 26 0x0016 0x0004 §0x1l 0x14 29 00 32 00 11 19 0D OC OB OA 09 08 07 06 05 04 03 02 01 00 || OxB98D33 || -38 OK
Data Type Data Header L2CAP Header ATT_Read_By_Group_Type_Req CRC RSSI FCs
YP€|I1TD NESN SN MD PDU-Length ||L2CAP Length Chanld ||Opcode StartingHandle EndingHandle RttGroupType (dBm)
L2CRE-5 | 2 1 a a 11 0x0007 0x0004] 0x10 0x0033 OXFFFE 00 28 0x3C57D1 |[_-38 0K
Data Header RSSI
Data Ty CRC FCS
YP® |IITD NESN SN MD EDU-Length (dBm)
Empty PDU|| 1 1 1 0 0 OxAEOBAO || -38 OK
Data Header RSSI
= LLID NESN SN MD PDU-Length & {(dBm) i
Erpty PDU|[1 0 1 a 0 OXREOD73 || -38 OK
Data Type Data Header L2CAP Header ATT_Error_Response CRC RSSI FCs
LLID NESN SN MD PDU-Length |[L2CAP-Length Chanld ||Opcode RegOpCode AttHandle ErrorCode (dBm}
raeae-5 2 o0 on a AxOO0S nxnond llnxor oxtno [PUIEE} a7T wor rommmninxnay | oxennraa ll —zr 1o

Figure 3-35 Read by Group Type Request/Read by Group Type Response

As shown above, Master requests from Slave for Attribute Group information of the
“primaryServiceUUID” with UUID being 0x2800.

#define GATT_UUID_PRIMARY_SERVICE 0x2800
const ulé my_primaryServiceUUID = GATT_UUID_PRIMARY_SERVICE;

AN-19112700-E1 100 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The following groups in Slave Attribute Table meet the requirement according to current
demo code.

1) Attribute Group with attHandle from 0x0001 to 0x0007, Attribute Value is
SERVICE_UUID_GENERIC_ACCESS (0x1800).

2) Attribute Group with attHandle from 0x0008 to 0x000a, Attribute Value is
SERVICE_UUID_DEVICE_INFORMATION (0x180A).

3) Attribute Group with attHandle from 0x000B to 0x0025, Attribute Value is
SERVICE_UUID_HUMAN_INTERFACE_DEVICE (0x1812).

4) Attribute Group with attHandle from 0x0026 to 0x0028, Attribute Value is
SERVICE_UUID_BATTERY (0x180F).

5) Attribute Group with attHandle from 0x0029 to 0x0032, Attribute Value is
TELINK_AUDIO_UUID_SERVICE (0x11, 0x19, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00).

Slave responds to Master with the attHandle and attValue information of the five Groups
above via the “Read by Group Type Response” command. The final
ATT_Error_Response indicates end of response. When Master receives this packet, it
will stop sending “Read by Group Type Request”. Please refer to Core_v5.0 for details of
“‘Read by Group Type Request” and “Read by Group Type Response” commands.

3.4.3.2 Find by Type Value Request, Find by Type Value Response

Please see Core_v5.0 (Vol 3/Part F/3.4.3.3 and 3.4.3.4) for details of “Find by Type
Value Request” and “Find by Type Value Response”.

The “Find by Type Value Request” command sent by Master specifies starting and
ending attHandle, as well as AttributeType and Attribute Value. After the request is
received, Slave will check through current Attribute Table according to the specified
starting and ending attHandle, and find the Attribute that matches the specified
AttributeType and Attribute Value. Then Slave will respond to Master with the Attribute
via the “Find by Type Value Response” command.

T Data T Data Header L2CAP Header ATT_Find_By_Type_Value_Req CRC RSSI FCS
ype LLID NESN SN MD FDU-Length ||L2CAP-Length Chanld ||Opcode StartingHandle EndingHandle AttType AttValue (dBm)
L2CAP-S || 2 1 1 0 13 020003 0x0004 |[0x06 _ 0x0001 0xFFFF 0x2800 OA 18 0x4CEA12 || -54 || oK |
N Data Header RSSI
DataTyPe |10 NEsN s MD PDU-Lengen| ChC |[casm [{PCS
1|(Empry FOU|| 1 00 0 0 0xC4coEs || -54 || o |
_ Data Header L2CAP Header ATT_Find_By_Type_Value_Rsp RSSI
Data T CRC Fcs
#WPE|ILID NESN SN MD PDU-Length ||L2CAP-Length Chanld |[Opcode HandleInfo (dBm)
Jlzacae-s | 2 1 0 o0 3 020005 0x0004 |[0x07 _ 0C 00 OE 00 0xF92€09 || -54 || oK |

Figure 3-36 Find by Type Value Request/Find by Type Value Response

3.4.3.3 Read by Type Request, Read by Type Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.4.1 and 3.4.4.2) for details about “Read by
Type Request” and “Read by Type Response”.

The “Read by Type Request” command sent by Master specifies starting and ending
attHandle, as well as AttributeType. After the request is received, Slave will check
through current Attribute Table according to the specified starting and ending attHandle,
and find the Attribute that matches the specified AttributeType. Then Slave will respond
to Master with the Attribute via the “Read by Type Response”.

AN-19112700-E1 101 Ver.1.0.0

(TELINIS

O SEMICONDUCTOR,

Telink TLSR8232 BLE SDK Developer Handbook

Data Type Data Header L2CAP Header ATT_Read_By_Type_Req
L LLID NESN SN MD FPDU-Length ||[L2CAP-Length Chanld |(Opcode StartingHandle EndingHandle RttType
L2CAP-S || 2 1 o0 1 11 020007 020001 [[0x08 0x0001 0xFFFF 00 2a 0
1 Data Header RSSI
Data T CRC FCS
YPE ||ILID HESN SN MD PDU-Length (dBm)
Empty FOU|| 1 1 0 0 0 0x298717|| 0 | ox
i Data Header RSSI
Data T CRC FCS
YPE |IIILID NESN SN MD PDU-Length (dBm)
Empty POU|| 1 1 1 a0 0 oxeosRBl|| o0 | ox
i Data Header RSSI
Data Ty CRC FCS
YP® |ITIID NESN SN MD PDU-Length (dBm)
Empty FOU|| 1 0 1 o 0 oxagecez|| o | ox
1 Data Header RSSI
Data T CRC FCS
YP® |L1ID NESN SN MD EDU-Length {dBm)
Empty PDU|| 1 0 0 o 0 nxaseice|| o | ox
) Data Type Data Header L2CAP Header ATT_Read_By Type_Rsp CRC
YPElLLID MNESN SN MD EDU-Length ||L2CAP-Length Chanld |Cpcode Length AtctData
L2CAP-S || 2 1 0 o 14 %0005 020004 |[0x09 0x08 03 00 74 53 &5 6C 66 9| OxDB&0Z
ar T = r L=y | m—]

Figure 3-37 Read by Type Request/Read by Type Response

As shown above, Master reads the Attribute with attType of 0x2A00, i.e. the Attribute with
Attribute Handle of 00 03 in Slave.

const u8 my_devName [] ={t, 'S, e, I 'f, 'i'};
#define GATT_UUID_DEVICE_NAME 0x2a00
const ul6 my_devNameUUID = GATT_UUID_DEVICE_NAME;

{0,2,sizeof (my_devName), sizeof (my_devName),(u8*)(&my_devNameUUID),

(u8*)(my_devName),
0},

In the “Read by Type response”, attData length is 8, the first two bytes are current
attHandle “0003”, followed by 6-byte Attribute Value.

3.4.3.4 Find Information Request, Find Information Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.3.1 and 3.4.3.2) for details about “Find
information request” and “Find information response”.

The “Find information request” command sent by Master specifies starting and ending
attHandle. After the request is received, Slave will respond to Master with Attribute
UUIDs according to the specified starting and ending attHandle via the “Find information
response”. As shown below, Master requests for information of three Attributes with
attHandle of 0x0016~0x0018, and Slave responds with corresponding UUIDs.

— Data Header L2CAP Header ATT_Find_Info_Req — RSSI ;
LE LLID NESN SN MD FDU-Length ||[L2CAP-Length ChanTd ||Opcode StartingHandle EndingHandle (dBm)
L2CAP-5 || 2 0 1 0 9 0x0005 0x0004 ||0x04 0x0016 0x0018 0x36282F || -38 || ¢
T Data Header RSSI
Data Ty CRC FCS
YP® |\TTTD NESN SN MD PDU-Length (dBm)
Empty POU|| 1 0 0 o0 0 0x2E00DS || -32 || ox
T Data Header RSS!
Data Ty CRC FCS
YBE |ITTID WESN SN MD PDU-Length (dBm)
Empty EOU|| 1 1 0 0 0 0xRE0606 || -38 || oK
T — Data Header L2CAP Header ATT_Find_Info_Rsp [
ye LLID NESN SN MD FPDU-Length ||{L2CAP-Length Chanld |[Opcode Format InfoData
L2CAP-5 || 2 1 1 0 13 0x000E 0x0004 ||0x05 0x01 16 00 02 29 17 00 08 29 18 00 03 28| O

Figure 3-38 Find Information Request/Find Information Response

AN-19112700-E1 102 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.4.3.5 Read Request, Read Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.4.3 and 3.4.4.4) for details about “Read
Request” and “Read Response”.

The “Read Request” command sent by Master specifies certain attHandle. After the
request is received, Slave will respond to Master with the Attribute Value of the specified
Attribute via the “Read Response” command (If the callback function r is set, this function
will be executed), as shown below.

Data Header L2CAP Header ATT_Read_Req RS5I
Data Ty = = CRC FCS
YPE|II1ID WESN SN MD POU-Length ||L2CAP-Length Chanld ||Cpcode AttHandle (dBm)
L2CRP-5 || 2 0 1 0 7 0x0003 0x0004 ||0x0R 0x0017 0x99CSFD || -38 |[0K |
Data Header RESI
Data T CRC FCS
YP€ |ITTID WESN SN MD PDU-Length (dBm)
Empty PDU || 1 0 0 0 0xAE0ODS || -38 || ox
Data Header RSSI
Data T CRC FCS
¥P€ |IITTD BESN SN MD PDU-Length (dBm)
Empty PDU || 1 1 0 0 0 OxRE0606 || -38 || oK
Data Header L2CAP Header ATT_Read_Rsp RSS!
Data Type = = CRC FCS
YPEITLID mESN SN MD POU-Length ||L2CAP-Length Chanld ||Opcode AttValue (dBm)
L2CAP-5 || 2 1 1 0 7 0x0003 0x0004 [|0x0B 02 01 ox908287 || -32 || ok

Figure 3-39 Read Request/Read Response

3.4.3.6 Read Blob Request, Read Blob Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.4.5 and 3.4.4.6) for details about “Read Blob
Request” and “Read Blob Response”.

If some Slave Attribute corresponds to Attribute Value with length exceeding MTU_SIZE
(It's set as 23 in current SDK), Master needs to read the Attribute Value via the “Read
Blob Request” command, so that the Attribute Value can be sent in packets. This
command specifies the attHandle and ValueOffset. After the request is received, Slave
will find corresponding Attribute, and respond to Master with the Attribute Value via the
“Read Blob Response” command according to the specified ValueOffset. (If the callback
function r is set, this function will be executed.)

As shown below, when Master needs the HID report map of Slave (report map length
largely exceeds 23), first Master sends “Read Request”, then Slave responds to Master
with part of the report map data via “Read response”; Master sends “Read Blob
Request”, and then Slave responds to Master with data via “Read Blob Response”.

L2CAP Header RSS!
(dBm)

38

Data Header
LLID NESN SN MD FPDU-Length
2 0 1 (1] 7

ATT_Read_Req
L2CAP-Length ChanlId |[Opcode AttHandle
0x0003 0x0004 |(0x0A 0x0020

RSSI
(camy ||FES
-38_ || oK

RSSI
(dBm)
-38

Data Type CRC FCS

L2CAP-S

Data Type
Empty PDU

Data Type
Empty PDU

0xF4DC27 OK

Data Header
LLID NESN SN MD PDU-Length
1 [1] 0 a [1]

CRC
0xRE00ODS

Data Header
LLID NESN SN MD PDU-Length
1 1 0 0 0

CRC FCS

0xAE0E06 0K

L2CAP Header
L2CAP-Length ChanId
0x0017 0x0004

RSSI
(dBm)
38

Data Header
LLID NESN SN MD PDU-Length
2 1 1 1] 27

ATT_Read_Rsp

Data Type cRC FCS

Opcode AttValue
0x0B__ 05 01 09 02 AL 01 85 01 09 0L Al 00 05 09 19 01 29 03 15 00 25 01

L2CRP-S OXEEE9DD OK

Data Header
LLID NESN SN MD PDU-Length
2 0 1 1] 3

L2CAP Header
L2CAP-Length ChanId
0x0005 0x0004

ATT_Read_Blob_Req
Opcode AttHandle ValueOffset
0x0C 0x0020 0x0016é

RSSI
dsm) | FE5

-38

Data Type CRC

L2CAP-5 Ox8F3ES5

RSSI
(dBm)
-38_|| oK.

RSSI
(cBmy ||FES
-38_|[oK

L2CAP Header
L2CAP-Length ChanId
0x0017 0x0004

Data Header
LLID NESN SN MD PDU-Length
1 0 0 0 0

Data Type CRC FCS

Empty PDU

Data Type
Empty PDU

Data Type

0xAE00DS

Data Header
LLID NESN SN MD PDU-Length
1 1 1] a 0

CRC
0XRE0606

Data Header
LLID NKESN SN MD PDU-Length
2 1 1 1] 27

ATT_Read_Blob_Rsp RSSI
(dBm)

-38

Opcode PartAttValue CRC FCS

0x0D 75 01 95 03 81 02 75 05 95 01 81 01 05 01 0% 30 09 31 09 38 15 81

L2CAP-5 0x2DEEF2 OK

L2CAP Header
L2CAP-Length ChanId
0x0005 0x0004

RSS!
(asm) | €3

-38

Data Header
LLID NESN SN MD FPDU-Length
2 Q 1 o 9

ATT_Read_Blob_Req
Opcode AttHandle ValueQffset
0x0C 0x0020 0x002C

Data Type CRC

L2CRP-3 0x557DEE

Figure 3-40 Read Blob Request/Read Blob Response

AN-19112700-E1 103 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.4.3.7 Exchange MTU Request, Exchange MTU Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.2.1 and 3.4.2.2) for details about “Exchange
MTU Request” and “Exchange MTU Response”.

As shown below, Master and Slave obtain MTU size of the other via the “Exchange MTU
Request” and “Exchange MTU Response” commands.

Data Header L2CAP Header ATT_Exchange_MTU_Req RSSI
Data T CRC FCS

1 YPE|TILID NESN SN MD POU-Length |L2CAP-Length Chanld ||Gpcode ClientRMTU (dBm)
I5M || L2CRP-5 2 1] 1 1] 7 0x0003 0x0004 ||0x02 0x009E 0xC70102 || -38 OK 1
) Data Header L2CAP Header ATT_Exchange_MTU_Rsp RSS!

Data T CRC FCS

LEE LLID NESN 5N MDD POU-Length ||L2CAP-Length Chanld [|Opcode SerwverRxMIU (dBm)
L2CAP-5 2 0 1] 1] 7 0x0003 0x0004 ||0x03 0x0017 0x1DEEEL || -3& OK

Figure 3-41 Exchange MTU Request/Exchange MTU Response

During data access process of Telink BLE Slave GATT layer, if there’s data exceeding a
RF packet length, which involves packet assembly and disassembly in GATT layer, Slave
and Master need to exchange RX MTU size of each other in advance. Transfer of long
packet data in GATT layer can be implemented via MTU size exchange.

1) Callback function of MTU size exchange
Function prototype:

typedef void (*attRxMtuSizeExchangeCommpleteCb)(
ulé connHandle,
ulé remoteMtuSize,
ule effectMtuSize);

The first ul6 is current connection handle, and it should be “BLS_CONN_HANDLE”
in Slave applications. The second ul6 is ClientRxMTU of Master. The third is the Rx
MTU size finally used.

The API is for registerring this callback function:

void blc_att_registerMtuSizeExchangeCb(

attRxMtuSizeExchangeCommpleteCb cb);

2) Processing of long Rx packet data in 5316 Slave GATT layer
5316 Slave Server Rx MTU is set as 23 by default. Actually maximum Server Rx
MTU can reach 247, i.e. 247-byte packet data on Master can be correctly re-
assembled on Slave. When it's needed to use packet re-assembly of Master in an
application, the API below should be called to modify RX size of Slave first.

ble sts t Dblc_att setRxMtuSize (ul6 mtu size);

The return values are shown as below:

ble_sts_t Value ERR Reason

BLE_SUCCESS 0

AN-19112700-E1 104 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
ATT_ERR_INVALID PARAMETE mtu_size exceeds the max value
R - 0x85 247,

When Master GATT layer needs to send long packet data to Slave, Master will
actively initiate “ATT_Exchange_MTU_req”, and Slave will respond with
“ATT_Exchange_MTU_rsp”. “ServerRxMTU” is the configured value of the API
“blc_att setRxMtuSize”. The callback function registered via
“blc_att_registerMtuSizeExchangeCb” will be triggered, and the second parameter of
the callback is “ClientRxMTU” of Master.

3) Processing of long Tx packet data in 5316 Slave GATT layer
When 5316 Slave needs to send long packet data in GATT layer, it should obtain
Client RxMTU of Master first, and the eventual data length should not exceed
ClientRxMTU.
First Slave should call the API “blc_att_setRxMtuSize” to set its ServerRxMTU.
Suppose it is set to 158.

blc_att_setRxMtuSize (158);

Then the API below should be called to actively initiate an
“ATT_Exchange_MTU_req”.

ble sts t blc_att requestMtuSizeExchange (

ul6 connHandle, ul6 mtu size);

“‘connHandle” is ID of Slave conection, i.e. “BLS_CONN_HANDLE”, while “mtu_size”
is ServerRxMTU.

blc_att_requestMtuSizeExchange(BLS_CONN_HANDLE, 158);

After the “ATT_Exchange_MTU_req” is received, Master will respond with
“ATT_Exchange_MTU_rsp”. Then the callback function registered via
“blc_att_registerMtuSizeExchangeCb” will be triggered, and the second parameter of
the callback function is ClientRxMTU of Master.

3.4.3.8 Write Request, Write Response

Please refer to Core_v5.0 (Vol 3/Part F/3.4.5.1 and 3.4.5.2) for details about “Write
Request” and “Write Response”.

The “Write Request” command sent by Master specifies certain attHandle and attaches
related data. After the request is received, Slave will find the specified Attribute,
determine whether to process the data by using the callback function w or directly write
the data into corresponding Attribute Value depending on whether the callback function w
is set by user. Finally Slave will respond to Master via “Write Response”.

As shown below, by sending “Write Request”, Master writes Attribute Value of 0x0001 to
the Slave Attribute with the attHandle of 0x0016. Then Slave will execute the write
operation and respond to Master via “Write Response”.

AN-19112700-E1 105 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
Data Header L2CAP Header ATT_Write_Req RSSI

Data Ty == CRC FCS

YPE|I1ID NESN SN MD EDU-Length ||L2CAE-Length Chanld ||Opcode AttHandle AttValue (dBm)

L2CRP-5 || 2 0o 1 a0 g 0x0005 0x0004 ||0x12 0x0014 01 a0 0xDCA476 || -38 || OK |
Data Header RSSI

DataT¥Pe | /7n WESW sw MD PDU-Length CRC (d8m) || F3

Empty PDU|| 1 [[0xAE00DS || -38 || ox
Data Header RSSI

DataT¥Pe | 77n WESW sw MD PDU-Length CRC (d8m) || 3

Empty PDU|| 1 1 0 a0 0 0xAE0606 || -38 || ox
Data Header L2CAP Header ATT_Write_Rsp RSSI

Data TVPE ||; 170 wesw sw D PDU-Length ||L2CAP-Length Chanld ||Opcode CRC (a8m) || 7S

L2CRP-5 || 2 1 1 a0 5 0x0001 0x0004 [|0x13 OxFBOB12 || -38 [OK |

Figure 3-42 Write Request/Write Response

3.4.3.9 Write Command
Please refer to Core_v5.0 (Vol 3/Part F/3.4.5.3) for details about “Write Command”.

The “Write Command” sent by Master specifies certain attHandle and attaches related
data. After the command is received, Slave will find the specified Attribute, determine
whether to process the data by using the callback function w or directly write the data into
corresponding Attribute Value depending on whether the callback function w is set by
user. Slave won’t respond to Master with any information.

3.4.3.10 Handle Value Notification

Please refer to Core_v5.0 (Vol 3/Part F/3.4.7.1) for details about “Handle Value
Notification”.

Parameter Size (octets) Description

Attribute Opcode 1 0x1B = Handle Valus Motification
Attribute Handle 2 The handle of the attribute
Attribute Value 0to (ATT_MTU-3) The cumrent value of the atiribute

Table 3.34: Format of Handle Value Notification

Figure 3-43 Handle Value Notification in BLE Spec
The figure above shows the format of “Handle Value Notification” in BLE Spec.

5316 BLE SDK supplies an API for Handle Value Notification of an Attribute. By invoking
this API, user can push the notify data into bottom-layer BLE software FIFO. Stack will
push the data of software FIFO into hardware FIFO during the latest packet transfer
interval, and finally send the data out via RF.

ble sts t bls_att pushNotifyData (ul6 handle, u8 *p, int len);

“handle” is attHandle of Attribute, “p” is the head pointer of successive memory data to be
sent, while “len” specifies byte number of data to be sent. Since this APl supports auto
packet disassembly, long notify data to be sent can be disassembled into multiple BLE
RF packets, large “len” is supported.

When Link Layer is in Conn state, generally data can be successfully pushed into
bottom-layer software FIFO by invoking this API. However, some special cases may

AN-19112700-E1 106 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

result in invoking failure, and the return value “ble_sts_t” will indicate the corresponding
error reason.

When this API is called in APP layer, it's recommended to check whether the return value
is “BLE_SUCCESS?”. If the return value is not “BLE_SUCCESS?”, a delay is needed to re-
push the data.

The return values are shown as below:

ble_sts t Value ERR reason

BLE_SUCCESS 0

Link Layer is in None

HClI ERR CONN NOT ESTABLISH Ox3E
- - - - Conn state.

Data cannot be sent

SMP_EER_PAIRING_IS_GOING_ON Ox8F . o
- - - = - during pairing phase.

Tasks with mass data are
O0x3A | being executed, software
Tx FIFO is not enough.

HCI_ERR_CONTROLLER_TX_FIFO_NOT_ENOUG
H

3.4.3.11 Handle Value Indication

Please refer to Core_v5.0 (Vol 3/Part F/3.4.7.2) for details about “Handle Value
Indication”.

Parameter Size (octets) Description

Attribute Opcode 1 0x1D = Handle Value Indication
Attribute Handle 2 The handle of the afttribute
Attribute Value 0to (ATT_MTU-3) The current value of the attribute

Table 3.35: Format of Handle Value Indication
Figure 3-44 Handle Value Indication in BLE Spec
The figure above shows the format of “Handle Value Indication” in BLE Spec.

5316 BLE SDK supplies an API for Handle Value Indication of an Attribute. By invoking
this API, user can push the indicate data into bottom-layer BLE software FIFO. Stack will
push the data of software FIFO into hardware FIFO during the latest packet transfer
interval, and finally send the data out via RF.

ble sts t bls_att pushIndicateData (ul6 handle, u8 *p, int len);

“handle” is attHandle corresponding to Attribute, “p” is the head pointer of successive
memory data to be sent, while “len” specifies byte number of data to be sent. Since this
API supports auto packet disassembly, long indicate data to be sent can be
disassembled into multiple BLE RF packets, large “len” is supported.

AN-19112700-E1 107 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

As specified in BLE Spec, Slave won’t regard data indication as success until Master
confirms the data, and the next indicate data won’t be sent until the previous data
indication is successful.

When Link Layer is in Conn state, generally data will be successfully pushed into bottom-
layer software FIFO by invoking this API; however, some special cases may result in
invoking failure, and the return value “ble_sts_t” will indicate the corresponding error
reason.

When this API is invoked in APP layer, it's recommended to check whether the return
value is “BLE_SUCCESS?”. If the return value is not “BLE_SUCCESS”, a delay is needed
to re-push the data.

The return values are shown as below:

ble_sts_t Value ERR reason
BLE_SUCCESS 0
HCI_ERR_CONN_NOT_ESTABLISH oxaE | ook Laver isin None
SMP_EER_PAIRING_IS_GOING_ON oxgF | Data cannot be sent

during pairing phase.

Tasks with mass data

HCI_ERR_CONTROLLER_TX_FIFO_NOT_ENOUG are being executed,
Ox3A .

H software Tx FIFO is not

enough.

The previous indicate
0x6B | data has not been
confirmed by Master.

ATT_ERR_PREVIOUS_INDICATE_DATA_HAS_NO
T_CONFIRMED

3.4.3.12 Handle Value Confirmation

Please refer to Core_v5.0 (Vol 3/Part F/3.4.7.3) for details about “Handle Value
Confirmation”.

Whenever the API “bls_att_pushindicateData” is called by APP layer to send an indicate
data to Master, Master will respond with “Confirmation” to confirm the data, then Slave
can continue to send the next indicate data.

Parameter Size (octets) Description

Attribute Opcode 1 0x1E = Handle Value Confirmation

Table 3.36: Format of Handle Value Confirmation

Figure 3-45 Handle Value Confirmation in BLE Spec

As shown above, “Confirmation” is not specific to indicate data of certain handle, and the
same “Confirmation” will be responded irrespective of handle.

AN-19112700-E1 108 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

A callback function is supplied in SDK for the APP layer to check whether the indicate
data has already been confirmed by Master. The registered callback function will be
executed once when a Handle Value Confirmation is received.

Definition of type of the callback function is:
typede fint (*att handleValueConfirm callback t) (void);

The API below serves to register the callback function:

void bls_att registerHandleValueConfirmCb
(att handleValueConfirm callback t cb);

3.5 SMP

Security Manager (SM) in BLE is mainly used to provide various encryption keys for LE
device to ensure data security. Encrypted link can protect the original contents of data in
the air from being intercepted, decoded or read by any attacker. Please refer to
Core_v5.0 (Vol 3/Part H/ Security Manager Specification) for details of SMP.

3.5.1 SMP Parameter Configuration

Parameter configuration related to SMP initialization includes device bonding, OOB (Out-
Of-Band) data verification and Secure Connection (SC).

3.5.1.1 Device Bonding

When it's needed to bond peer device information after pairing, the function below should
be called to enable current device bonding request.

int blc_smp_enableBonding (int en);
en = 0, disable current device bonding;

en =1 (default), enable current device bonding.

3.5.1.2 Device OOB data verification

The function below is used for OOB data verification:
void blc_smp_enableOobFlag (int en, u8 *oobData);

en: enable or disable OOB data verification;

en = 0, disable (default) OOB data verification;

en = 1, enable OOB data verification;

oobData: OOB data verification value, pointer to a group of 16-byte data.

3.5.1.3 Secure Connection Pairing (SC)

Secure Connection Pairing method is available from BLE 4.2. To distinguish it from
former pairings, the old ones are called Legacy Pairing. Compared with Legacy Pairing,
SC Pairing method is more secure.

AN-19112700-E1 109 Ver.1.0.0

.SEMICONDUCTORb

5316 BLE SDK supports both Legacy Pairing and Secure Connection Pairing, SDK uses
Legacy Pairing by default. If users want to use SC, call the function below:

Telink TLSR8232 BLE SDK Developer Handbook

void blc_smp_enableScFlag(int en);
en =1, enable SC;
en = 0 (default), disable SC.

Please note that this function should be called in initialization.

3.5.2 Enable SMP

int bls_smp enableParing (smp paringTrriger t encrypt en);

The following introduces the definition of the enum type “smp_paringTrriger_t” and
meanings of each parameter.

typedef enum{
SMP PARING DISABLE TRRIGER = 0,
SMP PARING CONN TRRIGER ,
SMP PARING PEER TRRIGER,

}smp_paringTrriger t;

1) encrypt_en = SMP_PARING_DISABLE_TRRIGER,;
It indicates pairing encryption is disabled for current device connection. Even if peer
device requests for pairing encryption, the device will reject this request.
It applies to the case when current device does not support encrypted pairing.
As shown below, Master sends pairing request, and then Slave responds with
“SM_Pairing_Failed”.

= oK Empry 20| 1 1 0 o o || oxoooo11 || =5 || Tox
Data Header L2CAP Header || SM_Pairing_Req |

Directi ACK Staty Data Ty = CRC

ection s YPEI1LID NESW SN MD PDU-Length [[LOCAP Length Chanld [|Opcede I0Cap OOBDataFlag RuthReq ize TnicKeyDist e | (

2 L2CAF-5 11 0 11 0x0007 0x0006 Jlox01 _ 0x04 _ 0x00 0x05___ 0x10 0107 0x07 ||_ox000014

= it 2 B 22 e
I Data Header RSSI
Direstion || ACK Status || DataType || o Ve ey sy zengrn || CRC ||(amm | P8
OK Empty PDU|l 1 0 1 0 0 0x000014 -54 0K

Data Header
LLID NESN SN MD PDU-Length
1 00 o

tcess Address || Direction || ACK Status || Data Type

Empty PDO

CRC

l0x22C799CS 0K

RSSI
wasm || %
0x000015 || -62_||_0K.
Data Header
ccess Address. ACK Status || Data Type (|71 wroy sy wp PDU-Lemgth

| LaCAPHeader |[SM_Pairing Failed | o RSSI
LaCAP-Tength ChanId ||Opcode Reason | (dBm)
(0s2AC799C5 oK L2CAP-5 | 2 1 o o 0x0002 0x0006 ||0x05 0x05 0x00000E || -54 c[(

I Ir r L T nmafeaner r

Direction

Figure 3-46 Pairing Disable

2) encrypt_en = SMP_PARING_CONN_TRRIGER,;
It indicates current device will actively initiate pairing encryption request once it's
connected with peer device. If peer device initiates pairing request first, current
device will still send pairing request and also respond to the request from peer
device.
As shown below, Slave actively sends the “SM_Security_Req”:

AN-19112700-E1 110 Ver.1.0.0

LTELINIS

Telink TLSR8232 BLE SDK Developer Handbook

592 ||=8321694 ||_o0x03 0x4CDE12E M->5 OK || Comorol]| 3 0 0 a) | EEEEESE0E ESONCONOeONOTRONE | 0:000021 |54 || oK

Time (us) Data Header LZCAP Header SM_security_Req RSSI
Pbr. Channel || Access Address || Direction || ACK Status | Data T, CcRe fcs
=T rannel irection us YPeTITD NESN SN MD PDU-Length |L2CAP-Length Chenld ||Cpcode AuthReg (dBm)
593 [|=5321995 || ox0s || GxacmeizEs | sou ok flrecaz—s| 2 10 o & 020002 020006 |0x08 01 ox000041 || 54 || ox

e e —

Time (us) " Data Header LZCAP Header SH_Pairing_Req
Pnbr. Channel | Access Address | Direction || ACK Status | Data T
P~ 39609 rannel irection us YPE|LID NESN SN MD FPDU-Length [|L2CAP-Length Chanld |(Gpcode I0Cap OCBDataFlag AuthBeq e InitKeyDiz
594 ||=8361694 0x12 0x4CD612E9 M->5 OK L2CAP-5 2 1 1 0 11 0x0007 0x0006 || 0x01 0x04 0x00 0x0D 0x10 0x0F
o |7 @ |[channer | Acsess Adaress oirection || acic status [losta ype [Peafiesder "] G SOl coc |2 |

Figure 3-47 Pairing Conn Trigger

3) encrypt_en = SMP_PARING_PEER_TRRIGER;
It indicates current device won’t actively intiate pairing request, and it will only
respond to the pairing request from peer device. If peer device does not send pairing
request, current device won’t implement encrypted pairing.
As shown below, Slave will respond to the “SM_Pairing_Req” from Master, but won’t
actively initiate pairing request.

e

- LLID NESN SN MD PDU-Length - (dBm) ||" =~
4T14E5 5->M oK Empty PDO|| 1 10 o a 0x00000D || -54_|| 0K
Data Header L2CAP Header Il SM_Pairing_Req Il RSS
€S8 || Direction (| ACK Status | Data TVpe || -7 rn ey oy mp FDU-Length [|L2CAP-Length Chanld ||Opcode IOCap OOBDataFlag AuthReq e InitKeyDist RespHeyDist || GxE (dBm
4T14E5 oK LacP-5 | 2 i1 o0 11 0x0007 0x0006 |[0x01 __ 0x04 _0x00 0x05 0x10 0x07 0x07 || _oxoooooe || 78
Data Header RSSI
Address | Direction || ACK Status || DataType ||/ ooy sy wn poU—engen CRC am) | S
4T14E5 oK Empty PDO|| 1 01 o a 0x00001C || -S4 || 0K
Data Header RSSI
Address | Direction || ACK Status || DataType ||/ oy sy wp poU—engen CRC am) | S
4T14E5 2 oK Empty PDO|| 1 00 o a 0x00000C || =78 || 0K

Data Header L2CAP Header I SM_Pairing_Rsp Il RSS
Address | Direction || ACK Status | DataT¥pe || 1717 —yroy sy wp PDU-Lengtn ||L2CAP Length Chanid |(pcod= IOCap OOBDataFlag AuthReq = InitKeyDist = R (dBm
4714E5 2 0K L2CAP-5 | 2 10 o 11 0x0007 0x0006 |[0x02__0%03 __0x00 0x01 0x10 0x03 0x03 0x000012 || -54

Figure 3-48 Pairing Peer Trigger

Note: This function can only be called before connection. It's recommended to call this
function in initialization.

3.5.3 SMP Event

As introduced in Controller part, except for Telink defined events, there are some SMP
events, e.g. “BLT_EV_FLAG_PAIRING_BEGIN”, “BLT_EV_FLAG_PAIRING_END".

3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN

Event trigger condition: When Slave just establishes connection with Master and enters
connection state, Slave sends “SM_Security_Req” command, and then Master sends
“SM_Pairing_Req” to request for pairing. After Slave receives this pairing request, this
event will be triggered to indicate pairing starts.

e Data Header L2CAP Header SM_Security_Req
LLID NESN SN MD PODU-Length |L2CAP-Length Chanld jOpcode AuthReq
L2cap-s | 2 1 0 o [; 0x0002 0x0006 loxoB 01
i Data Header L2CAP Header SM_Pairing_Req
LLID NESN SN MD FDU-Length ||L2CAP-Length Chanld ||Opcode I0Cap OOBDataFlag AuthReq MaxEncKeySize InitKeyDiat RespKeyDist
L2cap-s || 2 1 1 0 11 0x0007 0x0006 |[0x01 0x03 _ 0x00 0201 0x10 0202 0203

Figure 3-49 Pairing_Req Sent From Master

Pointer “p”: Null pointer.

Data length “n”: 0.

AN-19112700-E1 111 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3.5.3.2 BLT_EV_FLAG_PAIRING_END

Event trigger condition: This event will be triggered when pairing is finished in success or
failure. If Slave or Master fails to follow standard pairing procedure, or communication
abnormity occurs (e.g. report error), pairing will fail.

Data length “n™: 1.

Pointer “p”: It points to a flag variable, which should be either 0 (pairing success) or non-
zero value (pairing failure).

3.5.4 SMP Bonding Information

SMP bonding information herein is discussed relative to Slave device. Please refer to the
code of “direct adv” setting in initialization in “5316 remote” project.

ug b;nd._nu.ml;er = blc:smp_para.m_getCurIentBondingDeviceNu.mber(]; /fget bonded device number
smp_param save t bondInfo;
if (bond number) Jf/at least 1 bonding device exist
{

blc smp param loadByIndex{ bond number - 1, &bondInfo):; /f/get the latest bonding device (inde:
}
if (bond number) ffset direct adwv

{

//=et direct adv

uf status = bls_l1 setAdvParam(MY ADV INTERVAL MIN, MY ADV INTERVAL MAX,
ADV TYPE CONNECTABLE DIRECTED LOW DUTY, OWN ADDRESS PUBLIC,
bondInfo.peer addr type, bondInfo.peer addr,
MY APP AW CHANNEL,
ADV_FP_NCNE) -

if (status != BLE SUCCESS) { write_reg8 (0x8000, Ox11): while(l1): } //debug: adv setting err

ffit iz recommended that direct adv only last for several seconds, then switch to indirect adwv
bls 11 setAdvDuration (MY DIRECT ADV TMIE, 1):
bls_app registerEventCallback (ELT EV_FLAG ADV DURATION TIMEOUT, &app switch to_indirect_adv):

Slave can store pairing information of up to four Master devices at the same time. All of
the four devices can be re-connected successfully. The API below serves to set the
maximum device number for current storage, which should not exceed 4
(SMP_BONDING_DEVICE_MAX_NUM). The default value is 4.

#define SMP_BONDING DEVICE MAX NUM 4

ble sts t blc_smp param setBondingDeviceMaxNumber (int
device num) ;

Suppose it's set as “blc_smp_param_setBondingDeviceMaxNumber (4)”: When pairing
information of four paired devices are stored, if the 5" device is paired, the pairing info of
the oldest device will be deleted automatically, so that the pairing info of the 5" device
can be stored.

Suppose it's set as “blc_smp_param_setBondingDeviceMaxNumber (2)”: When pairing
information of two paired devices are stored, if the 3" device is paired, the pairing info of
the oldest device will be deleted automatically, so that the pairing info of the 3" device
can be stored.

The API below is used to obtain the number of successfully paired Master devices with
pairing info stored in Slave Flash.

AN-19112700-E1 112 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

u8 blc_smp param getCurrentBondingDeviceNumber (void) ;

If the return value is 3, it indicates three paired devices are stored in Flash currently, and
all of the three devices can be re-connected successfully.

“‘index” is related to “BondingDeviceNumber”: If “BondingDeviceNumber” is 1, there is
only one bonding device, and its index is 0. If “BondingDeviceNumber” is 2, there are two
bonding devices, and the index of the two devices are 0 and 1, respectively. The index
sequence is determined by the latest successful connection rather than the latest pairing:
Suppose Slave is successfully paired with MasterA and MasterB, successively, since
MasterB is the latest device at this moment, in Slave Flash storage, MasterA is index 0,
while MasterB is index 1. Then Slave is re-connected with MasterA successfully, since
the latest device is MasterA at this moment, MasterB is index 0, while MasterA is index 1.

If “BondingDeviceNumber” is 3, the index of the three devices are 0 (the first connected
device), 1, 2 (the latest connected device).

If “BondingDeviceNumber” is 4, the index of the four devices are 0 (the first connected
device), 1, 2, 3 (the latest connected device). As introduced above, if Slave is
successively paired with MasterA, B, C and D, since MasterD is the latest device at this
moment, MasterD is index 3. Then Slave is re-connected with MaserB, since the latest
device at this moment, MasterB is index 3.

Please pay attention to the case when more than four Master devices are paired: When
Slave is successively paired with MasterA, B, C and D, if it's paired with a new device
MasterE, the first paired device MasterA will be deleted automatically. When Slave is
successively paired with MasterA, B, C and D, if Slave is re-connected with MasterA (the
index sequence is B, C, D, A) and then paired with MasterE, pairing info of MasterB will
be deleted.

Master device bonding information are stored in Flash with format below:

typedef struoct {

flag:

peer addr type; //address used in link layer connection
peer addr[€]:

[EIC

[=]

peer key size;
peer id adrType: //peer identity address information in key distribution, used to identify

[~ ~)

[N = &)

=]

peer id addr[&]:

own_ltk[1€]: f/own_1tk[16]
peer irk[16]:
peer csrk[16]:

[EC

[=]

}smp_param save t;

Bonding info contains 64 bytes.

< “peer_addr_type” and “peer_addr” indicate connection address of Master in Link
Layer, which will be used during device direct adv.

< “peer_id_adrType’/“peer_id_addr’ and “peer_irk” indicate identity address and irk
declared by Master during “key distribution” phase. Related info won’'t be added to
resolving list, unless “peer_addr_type” and “peer_addr” are PRA (Resolvable Private
Addr) and user needs to use adderess filter (see “TEST_WHITELIST” in 5316
feature test).

< Other parameters are negligible to users.

The API below obtains device information from Flash via “index”.
u32 blc_smp param loadByIndex (u8 index,

smp_param_save t* smp param load);

AN-19112700-E1 113 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

If the return value is 0O, it indicates info obtaining failure; if the return value is non-zero
value, it indicates the starting address of the info in Flash. For example, if there are three
bonding devices currently, to obtain info of the latest connected device, “index” should be
set to “2”.

blc_smp_param_loadByIndex(2, ...)

The API below obtains information of bonding device from Flash via Master address
(connection addr in Link Layer).

u32 blc_smp param loadByAddr (u8 addr_ type,
u8* addr, smp param save t* smp param load);

If the return value is 0, it indicates info obtaining failure; if the return value is non-zero
value, it indicates the starting address of the info in Flash.

AN-19112700-E1 114 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

4, Power Management (PM)

Power Management hereinafter is referred to as “PM”.

4.1 PM Driver

Driver files related to PM are available in drivers/5316/pm_5316.c, drivers/5316/pm.h,
drivers/5316/pm_5316_32krc.c, drivers/5316/pm_5316_32kpad.c.

4.1.1 Low Power Modes
TLSR8232 supports three basic modes.

1) Working mode: In this mode, program runs normally, hardware digital modules work
normally, related analog modules and BLE RF transceiver can be enabled
depending on firmware. The current in this mode is about 8~30mA.

2) Suspend mode: Low power mode 1. In this mode, program execution pauses, most
hardware modules in IC are powered off, and the PM module still works normally. All
digital registers, analog registers and memory are non-volatile in this mode, i.e. all
data and states are held and won’t be lost. The pure IC current in this mode is about
8UA. After wakeup from suspend, program continues running from the break point.

3) Deepsleep mode: Low power mode 2. In this mode, program stops running, the vast
majority of hardware modules in IC are powered down, while the PM module still
works. Only a few retention analog registers are non-volatile in this mode; other
(digital and analog) registers and memory are volatile, i.e. all data won’t be held. The
retention analog registers (DEEP_ANA_REG in pm.h) can be used to store some
necessary information. After wakeup from deepsleep, MCU is rebooted, and it's
equivalent to power cycle (power cycle will reset all registers); firmware restarts
running and enters initialization. User can store some information in
DEEP_ANA_REG before MCU enters deepsleep. Then user can judge whether it's
pure power cycle or wakeup from deepsleep, by reading retention analog registers
during initialization and checking whether there’re pre-configured information. The
pure IC current in this mode is about 0.7uA; if internal Flash current (~1uA) is added,
the total current is about 1.7uA.

As introduced in Link Layer timing sequence, during each Adv Interval / Connection
Interval, MCU works with low duty cycle and enters suspend after tasks are processed.
Since MCU stays in suspend state at most time and current in suspend is very low, the
average current is decreased largely to enable low power.

When MCU does not need to work, it can be configured to enter deepsleep to minimize
power, and certain sources can be configured to wake up MCU.

4.1.2 Hardware Wakeup Sources

Figure 4-1 shows wakeup sources available for TLSR8232: In suspend mode, it can be
woken up by PAD, CORE and timer sources; while in deepsleep mode, it can be woken

AN-19112700-E1 115 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

up by PAD and timer sources. In 5316 BLE SDK, the following three types of wakeup
sources are available.

enum {
PM WAKEUP PAD = BIT(4),
PM WAKEUP CORE = BIT(5),

PM WAKEUP TIMER = BIT(6),

PAO 1
PA1l k
J corg | Wakeup
Suspend |wakeup
Mode
GPIO
WAKEUP
wakeu i
MODULE . P, 32k timer
~ PAD
wakeup= Deepsleep :wakeup
pCE Mode
PC7:—|

Figure 4-1 Hardware Wakeup Sources for 5316 MCU

As shown above, MCU can be woke up from low-power mode (suspend or deepsleep) by
hardware wakeup source TIMER, CORE or PAD.

The wakeup source “PM_WAKEUP_TIMER” is derived from hardware 32kHz RC timer.

This timer is correctly initialized in SDK, and user only needs to set this wakeup source in
“cpu_sleep_wakeup()”.

The two wakeup sources including “PM_WAKEUP_CORE” and “PM_WAKEUP_PAD”
are derived from GPIO. High/Low level of all GPIOs can be configured to wakeup MCU
from suspend/deepsleep via the CORE/PAD module. The CORE module can only
wakeup MCU from suspend, while the PAD module can wakeup MCU from both suspend
and deepsleep. However, 5316 BLE SDK, GPIO CORE works as wakeup source for
suspend, while GPIO PAD works as wakeup source for deepsleep.

As all the GPIO levels can wake up corresponding low power modes by CORE and PAD,

if users want to specify a level of certain GPIOs as the wakeup source, use the API
below:

1) Configure GPIO CORE as wakeup source for suspend:
void gpio_set_wakeup(u32 pin, u32 level, int en);

“pin” indicates GPIO pin; “level” indicates wakeup trigger level, 1-high level wakeup,
O-low level wakeup; “en”: 1-enable, O-disable.

AN-19112700-E1 116 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
Examples:
gpio_set wakeup(GPIO_PC2, 1, 1);// Enable GPIO_PC2 CORE high level
wakeup
gpio_set wakeup(GPIO_PC2, 1, 0);// Disable GPIO_PC2 CORE wakeup
gpio_set_wakeup(GPIO_PB5, 0, 1);//Enable GPIO_PB5 CORE low level

wakeup
gpio_set_wakeup(GPIO_PB5, 0, 0);// Disable GPIO_PB5 CORE wakeup

2) Configure GPIO PAD as wakeup source for deepsleep:
void cpu_set_gpio_wakeup (int pin, int pol, int en);

“pin” indicates GPIO pin; “pol” indicates wakeup trigger polarity, 1-high level wakeup,
O-low level wakeup; en: 1-enable, O-disable.
Examples:
cpu_set gpio_wakeup (GPIO_PC2, 1, 1);// Enable GPIO_PC2 PAD high level
wakeup
cpu_set gpio_wakeup (GPIO_PC2, 1, 0);// Disable GPIO_PC2 PAD wakeup
cpu_set_gpio_wakeup (GPIO_PB5, 0, 1);// Enable GPIO_PB5 PAD low level
wakeup
cpu_set_gpio_wakeup (GPIO_PB5, 0, 0);// Disable GPIO_PB5 PAD wakeup

4.1.3 Low Power Mode Entry and Wakeup

The API “cpu_sleep_wakeup” can be called to configure MCU to enter low power mode
and set wakeup source(s).

int cpu_sleep_wakeup (SleepMode TypeDef, SleepWakeupSrc_TypeDef,

unsigned int wakeup_tick);

1) Parameter “deepsleep”: 0-enter suspend, 1-enter deepsleep.

2) Parameter “wakeup_src”: It's used to configure wakeup source(s) for current
suspend/deepsleep, and PM_WAKEUP_PAD, PM_WAKEUP_CORE and
PM_WAKEUP_TIMER can be selected. Note that PM_WAKEUP_TIMER and
PM_WAKEUP_CORE can be used as wakeup source for suspend, while
PM_WAKEUP_TIMER and PM_WAKEUP_PAD can be used as wakeup source for
deepsleep. If wakeup_src is set as 0, MCU can’t be woke up after it enters low
power mode.

3) Parameter “wakeup_tick”: If the PM_WAKEUP_TIMER is not configured, this
parameter is invalid. Only when the PM_WAKEUP_TIMER is configured in the
wakeup_src, the wakeup_tick (absolute value) needs to be configured as current
system timer tick plus sleep time tick, and it determines when MCU will be woke up
by 32k timer. When system timer tick value matches the configured wakeup_tick,
MCU is woken up from low power mode. If the wakeup _tick is directly configured
without considering system timer tick, wakeup time can’t be effectively controlled.

AN-19112700-E1 117 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The absolute wakeup_tick value must be within the range 32 bits can represent, the
maximum sleep time configured by this API is limited. In current design, maximum
sleep time is set as 3/4 of the maximum scope 32 bits can represent. For 16MHz
clock, 32 bits can represent about 268s, the maximum suspend/deepsleep should be
268s*3/4=201s.

The int return value is one or “logic or” result of the five values below.

enum {
WARKEUP STATUS COMP = BIT(0),
WAKEUP STATUS TIMER = BIT(1l),
WAKEUP STATUS CORE = BIT(2),

WAKEUP STATUS PAD = BIT(3),

STATUS GPIO ERR NO ENTER PM = BIT(7),
STATUS ENTER SUSPEND = BIT(30),
}i

1) WAKEUP_STATUS_COMP is never used in BLE SDK, users do not need to know it.

2) WAKEUP_STATUS_TIMER/ WAKEUP_STATUS_CORE/ WAKEUP_STATUS_PAD
correspond to PM_WAKEUP_TIMER/ PM_WAKEUP_CORE/ PM_WAKEUP_PAD,
which represents the current low power mode is woken up by the wakeup sources.

3) STATUS GPIO ERR NO ENTER PM is a special state, and indicates a GPIO wakeup
error occurs currently. E.g. When a GPIO CORE high level wakeup is configured,
when this GPIO is high level, it tries to invoke “cpu_sleep_wakeup” to enter suspend
and wakeup source is set as “PM_WAKEUP_CORE”. In this case, MCU cannot
enter suspend, but will exit “cpu_sleep_wakeup” immediately and return the value
STATUS GPIO ERR NO ENTER PM.

4) STATUS ENTER SUSPEND represents the status enters suspend successfully.

5) The return value may be (WAKEUP STATUS TIMER | WAKEUP STATUS CORE) and
it means two wakeup sources take effect simultaneously.

Generally the following method is used to control sleep time:
cpu_sleep_wakeup (0, PM_WAKEUP_TIMER, clock_time() + delta_Tick);

“delta_Tick” is a relative time (e.g. 100*CLOCK_SYS_CLOCK_1MS). The result of
“clock_time()” plus “delta_Tick” is absolute time.

Examples for cpu_sleep_wakeup usage:

1) cpu_sleep_wakeup (0, PM_WAKEUP_CORE, 0);
MCU enters suspend mode when this function is executed, and it can be woken up
by GPIO CORE only.

2) cpu_sleep_wakeup (0, PM_WAKEUP_TIMER, clock_time() +
10*CLOCK _SYS CLOCK_1MS),
MCU enters suspend mode when this function is executed, and it can be woken up
by TIMER only; suspend time is 10ms, i.e. wakeup time is function execution
moment plus 10ms.

AN-19112700-E1 118 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3) cpu_sleep_wakeup (0, PM_WAKEUP_CORE | PM_WAKEUP_TIMER,clock_time() +
50*CLOCK SYS CLOCK 1MS);
MCU enters suspend mode when this function is executed, and it can be woke up by
GPIO CORE and TIMER. Timer wakeup time is set as 50ms relative to function
execution moment; if GPIO CORE wakeup is triggered before 50ms expires, MCU
will be woke up by GPIO, otherwise MCU will be woken up by Timer.

4) cpu_sleep_wakeup (1, PM_WAKEUP_PAD, 0);
MCU enters deepsleep mode when this function is executed, and it can be woken up
by GPIO PAD.

5) cpu_sleep_wakeup (1, PM_WAKEUP_TIMER, clock_time() + 8*
CLOCK SYS CLOCK 15);
MCU enters deepsleep mode when this function is executed, and it can be woken up
by Timer. Deep sleep time is 8s.

6) cpu_sleep_wakeup (1, PM_WAKEUP_PAD | PM_WAKEUP_TIMER,clock_time() +
10*CLOCK SYS CLOCK 15);
MCU enters deepsleep mode when this function is executed, and it can be woken up
by GPIO PAD and Timer. Timer wakeup time is 10s relative to function execution
moment. If GPIO PAD wakeup is triggered before 10s expires, MCU will be woke up
by GPIO, otherwise MCU will be woken up by Timer.

4.2 BLE Low Power Management

In 5316 BLE SDK, low power management is implemented via power management of
Link Layer.

In current Telink BLE SDK, stack bottom layer only implements low power management
for Advertising state and Connection state Slave role, and a set of APIs are supplied for
user. As for other states, low power management is not directly supplied, or it's needed
to invoke PM driver to implement PM, e.g. PM in Idle state.

4.2.1 PM In Idle State

When Link Layer is in Idle state, the “blt_sdk_main_loop” does not execute any
operation. In this state SDK does not provide any low power management and users
need to configure it themselves. Users may call “cpu_sleep_wakeup()” to implement low
power management to configure MCU to enter suspend or deepsleep mode, and set
wakeup sources correspondingly.

AN-19112700-E1 119 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

void main leoop ()
{
tick loop ++;

UI entr v ST i i dddiiiiiiiirs
ffadd uzer task
if(bl=z 11 getCurrentState(} == BL5 LINK STATE IDLE){ //Idle =state

cpu sleep wakeup (0, PM WAKEUP TIMER, clock time() + 10 *{LOCK SYS CLOCK 1MS):
¥
else{

blt pm proc(}: //BLE Rdv & Conn state
H

Figure 4-2 PM in Link Layer Idle state

The figure above shows simple reference code: When Link Layer is in Idle state, there’s
10ms suspend during each mainloop.

In Idle state, MCU can also enter deepsleep mode directly.

4.2.2 PMin BLE Adv State & Conn State

When Link Layer is in Advertising state or Conn state Slave role:

1) InAdvertising state, during each Adv Interval, the remaining time except for Adv
Event can be used to process Ul task or enter suspend.

2) In Conn state Slave role, during each Conn interval, the remaining time except for
Brx Event (brx start + brx working + brx post) can be used to process Ul task or
enter suspend.

Actually BLE PM includes the management of the Ul task/suspend duration. User can

manage this duration, and determine whether to run Ul task or enter suspend to save
power.

BLE PM does not include the management of deepsleep. User can directly invoke
“cpu_sleep_wakeup” in Ul layer to enter deepsleep.

BLE PM does not need user to directly invoke the API “cpu_sleep_wakeup” in PM driver
layer. In BLE stack part of 826x BLE SDK, according to states and low power modes of
Link Layer, a PM mechanism is supplied (code is in “blt_sdk_main_loop”). Users only
need to call corresponding API to configure and manage low power.

4.3 BLE PM Configuration
4.3.1 PM Module Initialization

Similar to the design of Link Layer state machine, PM module needs to be enabled in
initialization by calling the API below. For applications with no need of PM this API does

AN-19112700-E1 120 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

not need to be called, thus PM related code and variables won’t be compiled to the
firmeware, and resources can be saved.

void blc_11 initPowerManagement module (void) ;

4.3.2 Set Low Power Modes via “bls_pm_setSuspendMask”

The API used to configure PM for Link Layer Advertising state and Conn state in 5316
BLE SDK is:

void bls pm setSuspendMask (u8 mask);

u8 bls pm getSuspendMask (void);

By using “bls_pm_setSuspendMask”, a bottom-layer variable “SuspendMask” is set to
configure low power mode. Actually the variable in code is “bls_pm.suspend_mask”, and
its default value is “SUSPEND_DISABLE”.

“bls_pm_getSuspendMask” is used to obtain current SuspendMask value, which equals
the value configured by previous invoked “bls_pm_setSuspendMask”. If the variable is
not configured, the value equals the default “SUSPEND_DISABLE”.

Values for SuspendMask include:
////////////////// Power Management ///////////////////////

#define SUSPEND DISABLE 0

#define SUSPEND ADV BIT (0)
#define SUSPEND_CONN BIT (1)
#define MCU_STALL BIT (6)

MCU_STALL is a special mode and it will be introduced later.

Please refer to Link Layer timing sequence (section 3.2.4) and working mechanism of low
power management (section 4.3.4) to help understand the configuration of
“bls_pm_setSuspendMask”.

SuspendMask can be selectable as any one of the values above, or combination value
(“or” operation) of Advertising state and Conn state, as shown below:

bls_pm_setSuspendMask(SUSPEND ADV);
bls_pm_setSuspendMask(SUSPEND CONN);
bls_pm_setSuspendMask(MCU STALL);
bls_pm_setSuspendMask(SUSPEND DISABLE);

bls_pm_setSuspendMask(SUSPEND ADV | SUSPEND CONN);

4.3.3 bls_pm_setWakeupSource

Users can enable or disable PM in different states by calling “bls_pm_setSuspendMask”.
The API below is used to set corresponding wakeup sources.

AN-19112700-E1 121 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

void bls pm setWakeupSource (u8 source);

This API sets a bottom-layer variable “WakeupSource”. The actual variable in code is
“bls_pm.wakeup_src”.

The WakeupSource includes PM_WAKEUP_PAD, PM_WAKEUP_CORE,
PM_WAKEUP_TIMER, and their “or” combinations.

If MCU enters suspend mode from Advertising state or Conn state Slave role, actual
system wakeup source should be:

WakeupSource | PM_WAKEUP_TIMER

The “PM_WAKEUP_TIMER” is necessary and it does not depend on user configuration,
which ensures MCU can be woke up to process Adv Event or Brx Event.

The wakeup source configured by “bls_pm_setWakeupSource” only applies to current
low power mode; once MCU is woken up from suspend or deepsleep, the
WakeupSource will be cleared in bottom layer and become invalid. The wakeup source
for suspend or deepsleep needs to be re-configured.

4.3.4 Working Mechanism of Low Power Managment

To better understand the configurations of “SuspendMask” and “WakeupSource”, this
section introduces the principle of low power management mechanism.

In SDK, mainloop is a structure of while(1):
while(1)
{
blt_sdk_main_loop();
/Ul task
}

“blt_sdk_main_loop” is being executed in while(1) all the time. As the code of BLE low
power management mechanism is in “blt_sdk_main_loop”, it is also being executed all
the time.

Corresponding to BLE Link Layer timing sequence (section 3.2.4), two time parameters
are defined: “T_advertising” indicates the start time of Link Layer Adv Event in
Advertising state; “T_brx” indicates the start time of Link Layer Brx Event in Conn state
Slave role.

In blt_sdk_main_loop, the pseudo code of low power management is shown as below:

int blt_sdk_main_loop (void)

if(SuspendMask == SUSPEND_DISABLE) // SUSPEND_DISABLE, not enter low
power mode

{

return O;

AN-19112700-E1 122 Ver.1.0.0

(TELINIS

SSEMICONDUCIOR) Telink TLSR8232 BLE SDK Developer Handbook

if(Link Layer State is in Advertising state orConn state Slave role)

{

if(Link Layer in Adv Event or Brx Event) // BLE packet transfer is ongoing, not
enter low power mode

{

return O;

else

blt_brx_sleep (); //suspend & wakeup processing function

}

return 1;

1) When “bltPm.suspend_mask” is set to “SUSPEND_DISALE”, “blt_brx_sleep” will not
be executed. When users use “bls_pm_setSuspendMask (SUSPEND_DISABLE)”,
the logic of BLE low power management mechanism will become totally invalid,
MCU will not enter low power mode and loop of while(1) is being executed nonstop.

2) If Adv Event of Advertising State or Brx Event of Conn state Slave role is being
executed, “blt_brx_sleep” will not be executed as RF task is in operation, SDK only
enter sleep mode after Adv Event or Brx Event is completed.

“blt_brx_sleep” will be executed only if it is not under the two conditions above.

void blt_brx_sleep (void)
{
if((Link Layer state == Adv state)&& (SuspendMask&SUSPEND ADV))
{ llenter suspend from current Adv state
Execute callback function of event “BLT EV FLAG SUSPEND ENTER”

cpu_sleep wakeup (0, PM WAKEUP TIMER | WakeupSource,
T advertising + advInterval); //suspend

Execute callback function of event “BLT EV FLAG SUSPEND EXIT”

if (current suspend is woken up by GPIO CORE in advance)

{

AN-19112700-E1 123 Ver.1.0.0

"‘-’M'CON"”CTORb Telink TLSR8232 BLE SDK Developer Handbook

Execute callback function of event
“BLT EV FLAG GPIO EARLY WAKEUP”

Re-enter suspend, until wakeup at “T advertising +
advInterval”

}
}

else 1f((Link Layer state == Conn state Slave role) &&
(SuspendMask&SUSPEND CONN)) //enter suspend from current Conn state

u32 wakeup tick;
if (conn latency is not 0) //conn_latency!=0
{
/I refer to section 4.4 for latency_use
ul6 latency use = bls calculatelLatency();
wakeup tick = T brx + (latency use+l) * conn interval;
}
else [/ conn_latency ==

{

wakeup tick = T brx + conn interval;

Execute callback function of event “BLT EV FLAG SUSPEND ENTER”
cpu_sleep wakeup (0, PM WAKEUP TIMER|WakeupSource, wakeup tick);

Execute callback function of event “BLT EV FLAG SUSPEND EXIT”

if (current suspend is woken up by GPIO CORE in advance)

{

Execute callback function of event
“BLT EV FLAG GPIO EARLY WAKEUP”

BLE timing sequence adjustment related processing

/[clear low power configuration parameters related to user
WakeupSource= 0; //clear wakeup source configuration

user latecny = Oxffff;

AN-19112700-E1 124 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

4.4 “latency_use” Configuration and Calculation

As introduced in working mechanism of low power management (section 4.3.4), if the
“suspendMask” is set as “SUSPEND_CONN?” in Conn state Slave role, the actual
wakeup time should be:

wakeup_tick = T_brx + (latency_use+1) * conn_interval;
“T_brx”: Brx Event Rx time during current interval.

If “latency_use” is 0, MCU must be woke up during next interval to listen for packets; if
“latency_use” is not 0, MCU can skip “latency_use” intervals to save power.

latency_use = bls_calculateLatency();

The calculation of “latency_use” involves “user_latency” which users can configure. The
APl and source code are as below:

void bls pm setManuallatency (ul6 latency)
{
user_latency = latency;
}
The following shows how to calculate “latency_use”:

First calculate system latency:

1) If connection latency in current connection parameters is 0, system latency would be

0.

2) If connection latency in current connection parameters is not 0:

a) If current system has unfinished task (e.g. there are data to be sent, or there are
data received from Master to be processed), MCU must be woke up during next
interval to continue the task, so system latency should be 0.

b) If current system has no task to process, system latency should equal
connection latency except in the case below: If “update map request” or “update
connection parameter request” is received from Master, and the actual update
moment is earlier than (connection latency+1) intervals, the actual system
latency would ensure MCU is woke up during the interval before the actual
update moment, so as not to disturb BLE timing sequence.

Actually the eventual latency_use equals min(system latency, user_latency), i.e. the
minimum value of system latency and user_latency.

If the latency manually configured by invoking “bls_pm_setManualLatency” during Ul
entry is smaller than system latency, it can be used as the eventual latency_use. It only
applies to non-zero system latency.

Note that the final sentence of each “blt_sdk_main_loop” will set “user_latency” as
“Oxffff”. Therefore, the user latency configured by calling “bls_pm_setManualLatency”
only applies to the current suspend.

4.5 Other APIs

This section provides descriptions of other APIs except the APIs introduced above.

AN-19112700-E1 125 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

4.5.1 bls_pm_getSystemWakeupTick

The API below is used to obtain suspend wakeup time (system tick value) calculated by
PM module.

u32 bls_pm_getSystemWakeupTick(void);

According to section 4.3.4, this API can be invoked only in the callback function of
“BLT_EV_FLAG_SUSPEND_ENTER” event.

When the “blt_brx_sleep” function is executed by PM module, the suspend wakeup time
is calculated according to current Link Layer state and the “SuspendMask” set in APP
layer. APP layer can read this value only via the callback function of
“BLT_EV_FLAG_SUSPEND_ENTER” event. For example, MCU needs to enter suspend
from Conn state, and conn latency is not O:

ul6 latency use = bls calculatelLatency () ;
wakeup tick = T brx + (latency use+l) * conn interval;
cpu_sleep wakeup (0, PM WAKEUP TIMER|WakeupSource, wakeup tick);

APP layer can’t predict in advance the latency_use calculated by “bls_calculateLatency”
and thus does not know the actual wakeup_tick; the wakeup time can be obtained only
by invoking “bls_pm_getSystemWakeupTick” in the callback function of
“‘BLT_EV_FLAG_SUSPEND_ENTER” event.

Following is a key scan application example to illustrate the usage of
“BLT_EV_FLAG_SUSPEND_ENTER” callback function and
“bls_pm_getSystemWakeupTick”.

bls_app_registerEventCallback(BLT_EV_FLAG_SUSPEND_ENTER,
&ble_remote_set_sleep _wakeup);

void ble_remote_ set_sleep wakeup (u8 e, u8 *p, int n)

{

if(bls 11 getCurrentState() == BLS LINK STATE CONN &&
((u32) (bls_pm getSystemWakeupTick() - clock time())) >

80 * CLOCK SYS CLOCK 1MS)
//gpio CORE wakeup suspend
bls pm setWakeupSource (PM WAKEUP CORE) ;

}

The callback function is used to avoid key press loss. Generally, a key press lasts for
hundreds of milliseconds~100ms. When “bls_pm_setSuspendMask” configures MCU to
enter suspend from both Advertising state and Conn state, if “Conn Latency” is not
enabled (0), as long as Adyv interval and Conn interval is not especially large (generally
set as a value not exceeding 100ms), suspend time won’t exceed Adv interval and Conn
interval; since it can ensure key scan frequency, key press loss can be avoided. In this
case, GPIO wakeup is not configured, so that key press won’t wakeup MCU.

However, if latency is enabled, (e.g. conn_interval is 10ms, latency is 99), suspend may
last for 1s in Conn state. During this process, there may be key press lost. Check in the

AN-19112700-E1 126 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

“‘BLT_EV_FLAG SUSPEND ENTER” callback, if current state is Conn state, and
wakeup time for the following suspend is more than 80ms from current time, GPIO CORE
wakeup will be added. If timer wakeup is not triggered yet, and GPIO level changes due
to key press, MCU wakeup is triggered in advance, so that key press won’t be lost and
key scan task can be processed.

4.5.2 bls_pm_enableAdvMcuStall

The API below is used to decrease peak current during advertising.

void bls pm enableAdvMcuStall (u8 en);
en: 1 - Enable MCU stall; O - Disable MCU stall.

Please note that Timerl is used in stack bottom layer to implement MCU stall during
advertising. If this power optimization is added, APP layer should not use Timer1l.

4.6 Notes about GPIO Wakeup

4.6.1 Fail to Enter Suspend/Deepsleep When Wakeup Level is
Valid

Since TLSR8232 CORE/PAD wakeup is triggered by high/low level rather than
positive/negative edge, after GPIO CORE or PAD source is configured, e.g. MCU is
configured to wake up from suspend by high level of certain GPIO CORE, the GPIO input
must be low level when MCU invokes “cpu_wakeup_sleep” to enter suspend. If the GPIO
is already high level input currently, the configuration won'’t take effect, and Slave doesn’t
enter suspend. This also applies to GPIO PAD wakeup.

The situation above may lead to unexpected problems. For example, MCU is expected to
enter deepsleep and execute firmware after wakeup; however, MCU can’t enter
deepsleep and continues to execute the code unexpectedly, thus firmware running flow
may be messed.

In code of 5316 ble remote, a solution is given to solve the problem.

Via configuration in “BLT_EV_FLAG_SUSPEND_ENTER”, GPIO CORE wakeup won’t
be enabled unless suspend time exceeds the specified time.

void ble_remote_ set_sleep wakeup (u8 e, u8 *p, int n)
{

if(bls 11 getCurrentState() == BLS LINK STATE CONN &&
((u32) (bls pm getSystemWakeupTick() - clock time())) >

80 * CLOCK SYS CLOCK 1MS)
bls pm setWakeupSource (PM WAKEUP CORE) ;

}

When there is key not released, users can ensure suspend time won’t exceed 80ms by
manually setting latency as 0 or a small value, thus GPIO CORE high-level wakeup won’t
be enabled with key held (high level in drive pin). The sample code is shown as below:

AN-19112700-E1 127 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

user task flg = scan pin need || key not released || DEVICE LED BUSY;

if (user task flg){
#if (LONG PRESS KEY POWER OPTIMTZE)
extern int key matrix same as last cnt:
if (key matrix same as last cnt > 3}{

blz pm setManuallatency(ui_manual latency when key press() }:
}
else{
blz pm setManuallatency(0); //latency off: 0
}
felse
bls pm setManuallatency (0):
fendif

H

MCU will enter deepsleep in following cases:

1) There is no task (including key press task) for successive 60s duration. In this case,
the problem MCU can’t enter deepsleep due to high level from drive pin can be
avoided.

2) Some button is stuck for 60s. In this case, though high level is input in drive pin, by
inverting the polarity of the stuck drive pin to low-level wakeup, MCU is allowed to
enter deepsleep (refer to section 7.7).

User should note this problem when using Telink GPIO CORE/PAD wakeup.

4.7 BLE System PM Reference

Based on the understanding of the principle of BLE SDK low power management, users
can flexibly configure low power management. See the reference code of low power
management of SDK demo “5316 ble remote” for reference.

Function “blt_pm_proc()” is included in Ul entry of main_loop. Please note that if Ul entry
needs to process multiple tasks, the “blt_pm_proc()” should be close to the
“blt_sdk_main_loop”, since its setting depends on processing result of other tasks in Ul
entry.

Conclusions of low power management are:

1) If suspend needs to be disabled for task such as IR, the “SuspendMask” should be
set as “SUSPEND_DISABLE”.

2) In Advertising state, if Slave continuous adv time reaches 60s, it should be
configured to enter deepsleep in current main_loop, and wakeup source should be
set as “GPIO PAD” (enable key press wakeup in advance). Software timer is used to
check whether adv time exceeds 60s, and the variable “advertise_begin_tick” serves
to record the system tick when adv starts.

Slave is configured to enter deepsleep after 60s of no advertising, so as to save
power and avoid Slave from advertising when Master fails to respond. Actually user
needs to evaluate power consumption and then determine how to process time for
Adyv state.

3) In Conn state, if Slave has no LED task, etc., and all keys are released, Slave is
configured to enter deepsleep in current main_loop when it exceeds 60s away from
the latest valid task, and wakeup source is set as “GPIO PAD” (enable key press

AN-19112700-E1 128 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

wakeup in advance). It will be recorded in the retention register DEEP_ANA_REGO
it's the Conn state from which MCU enters current deepsleep. After wakeup, Slave
can configure fast adv packet to establish connection with Master as soon as
possible.

Slave is configured to enter deepsleep after 60s of no valid task, so as to save
power. Actually MCU can be configured not to enter deepsleep, as long as its power
consumption is very low to maintain connection. User needs to determine the
implementation considering actual requirement and power consumption.

When MCU enters deepsleep from Conn state, first Slave should invoke the
“bls_lI_terminateConnection” to send a “TERMINATE” command to Master, and
enter deepsleep after this command is acked or the “BLT_EV_FLAG_TERMINATE”
is triggered by timeout.

4) User needs to manually set latency as 0, if long time sleep (long suspend duration)
is not allowed for task processing, such as key_not_released, DEVICE_LED BUSY
(LONG_PRESS_KEY_POWER_OPTIMIZE is 0).

5) Based on step 4), after latency is disabled manually, MCU will wake up in each
conn_interval, thus power consumption is increased; since it's not needed to detect
key press and process LED task in every conn_interval, user can manually set
latency as other value and further optimize power consumption.

When the” LONG_PRESS_KEY_POWER_OPTIMIZE” is 1, after key press is
stabilized (key_matrix_same_as_last_cnt > 5), user can set latency value manually.
If it's configured as “bls_pm_setManualLatency (4)”, suspend will last for 5
conn_intervals. When conn_interval is 10 ms, MCU will wake up for every 50 ms
(10*(4+1) = 50ms) to process LED task and detect key press. Actually user needs to
consider the conn_interval value and task response time, and optimize power
consumption without influencing function correspondingly.

4.8 Timer Wakeup of APP Layer

In Advertising state or Conn state Slave role, once MCU enters suspend, it can be woke
up by stack only in specific moment, and users can hardly wake up MCU in advance. To
add flexibility of PM, a timer wakeup API in APP layer and corresponding callback
function are supplied in SDK. Below is the timer wakeup API in APP layer:

void bls_pm setAppWakeupLowPower (u32 wakeup tick, u8 enable);
“wakeup_tick” indicates absolute system tick value for timer wakeup.
enable: 1 - enable this wakeup function; O - disable this wakeup function.

When timer wakeup in APP layer is triggered, the callback function registerd by
“bls_pm_registerAppWakeupLowPowerCb” is executed. It’s prototype and APl are as
follows:

typedef void (*pm appWakeupLowPower callback t) (int);
void bls pm registerAppWakeupLowPowerCb (
pm_appWakeupLowPower callback t cb);

When “bls_pm_setAppWakeupLowPower” is used to set app wakeup_tick for timer
wakeup in APP layer, before SDK bottom enters suspend, it will check whether this app

AN-19112700-E1 129 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

wakeup tick is within current suspend time. If yes, suspend will be triggered to wake up in
advance at app wakeup_tick (as shown in Figure 4-3). If not, this wakeup_tick is
negligible to bottom layer, and wakeup time depends on BLE timing sequence.

T brx T wakeup

|
|
|
I app_wakeup tick
|
|

T}UI task{i
|

|

|

-

sleep

4

brx
—
event

Y

Conn interval

Figure 4-3 Trigger APP Wakup Tick in Advance

AN-19112700-E1 130 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

5. Low Battery Detect

Telink BLE SDK and related documents may refer to this subject with different names
such as “battery power detect/check”, “battery power detect/check”, “low battery
detect/check”, “low power detect/check”, “battery detect/check”. In SDK code, there are
file and function names such as “battery_check”, “battery_detect”,
“battery_power_check”. In this document, we use “low battery detect”.

5.1 Significance of Low Battery Detect

Since battery voltage would gradually drop with time, for battery-powered products,
problems would occur once battery voltage drops below a certain level.

1) For TLSR8232, operation voltage range is 1.9V~3.6V. Below 1.8V, normal operation
is not guaranteed.

2) Atlow battery voltage, unstable voltage may result in error for Flash “write” or
“erase” operation, so that unexpected disruption of program FW or user data would
lead to product function failure. Based on our MP experience, the threshold is set at
2.0V.

It is necessary to declare a “secure voltage”. Once battery drops below this voltage level,
MCU should shutdown to stop working, or enter deepsleep as implemented in the SDK.

Before MCU shutdown, certain Ul behavior, e.g. quick LED blinking in the
“5316_ble_remote”), can be used as low battery alarm, so as to remind user that it's
time to recharge or replace the low battery.

“Secure voltage”, or “alarm voltage”, is set at 2.0V in current SDK. For certain extreme
condition of power instability caused by HW design, secure voltage can be set at higher
value, e.g. 2.1 or 2.2V.

For battery-powered products supported by Telink BLE SDK, Low Battery Detect must be
implemented to ensure product stability across its lifetime.

5.2 Implementation of Low Battery Detect

For Low Battery Detect, ADC should be used to measure supply voltage. It's
recommended to read TLSR8232 datasheet or ADC driver related document and get
familiar with ADC module.

In the SDK, Low Battery Detect is implemented in the “battery_check.h” and
“battery_check.c”.

Please ensure the macro “BATT_CHECK_ENABLE” is enabled in the "app_config.h”. DO
NOT change the macro since it's enabled by default.

#define BATT CHECK ENABLE 1 //must enable

5.2.1 Cautions of Low Battery Detect

Low Battery Detect is a basic ADC task to sample and measure supply voltage. Please
pay attention to the following items.

AN-19112700-E1 131 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

5.2.1.1 MUST Use GPIO Input Channel

For Telink 826x family, ADC module supports “VCC/VBAT” input channel to sample
supply voltage.

For TLSR8232, though this design is reserved (corresponding to “VBAT” in the enum
type “ADC_InputPchTypeDef”), based on certain reasons, it's not allowed to use the
“VBAT” channel. Therefore, user must adopt GPIO input channel of ADC instead, which
includes PA6, PA7, and PBO~PB?7.

/*ADC analog positive input channel selection enum*/
typedef enum {

NOINPUTP,

A6P,

A7P,

BoP,

B1P,

B2P,

B3P,

B4P,

B5P,

Bé6P,

B7P,

PGAOP,

PGA1P,

TEMSENSORP,

RSSI P,

VBAT,
}YADC_InputPchTypeDef;

There are two ways to implement ADC sampling of supply voltage via GPIO input
channel.

1) Directly connect power supply to GPIO input channel of ADC
At ADC initialization, by setting specific GPIO to high impedance, voltage at the
GPIO equals supply voltage, so ADC can directly sample supply voltage.

2) Use GPIO high-level output to sample supply voltage without connection between
supply and GPIO input channel.
As per the design of TLSR8232 internal circuit, voltage of GPIO high-level output
always equals supply voltage and thus can be sampled by ADC.

In the project “6316_ble_remote” of the SDK, the second method is employed with GPIO
input channel selected as PA7.

AN-19112700-E1 132 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

To use PA7 as GPIO input channel, PA7 should act as general GPIO, and at initialization
user should follow its default configurations (ie, oe, output) without the need of special
modification.

#define GPIO VBAT DETECT GPIO PA7

#define PA7 FUNC AS GPIO

PA7 should output high level at ADC sampling.
gpio_set input en(GPIO_VBAT DETECT, 0); //disable input function
gpio_set output en(GPIO_VBAT DETECT, 1);//enable output function
gpio write (GPIO VBAT DETECT, 1); //output 1

Generally, after ADC sampling, PA7 output can be disabled. However, for the
“5316_ble _remote”, PA7 on the corresponding HW is floating (NC), high-level output
won’t bring any current leakage, PA7 output is not disabled actually.

5.2.1.2 MUST Use ADC Differential Mode

Though in theory TLSR8232 ADC input supports both Single Ended Mode and
Differential Mode, in the SDK as well as actual applications, only Differential Mode is
allowed, and Single Ended Mode is forbidden.

Differential mode supports positive and negative input channel, thus voltage to be
measured equals the voltage difference of positive end and negative end.

If only one GPIO input channel is available for ADC, this GPIO should be set as positive
input channel, while GND should be set as negative input channel. By this setting,
voltage difference equals voltage of positive end.

The code for Low Battery Detect in the SDK is as below. API
“adc_set_all_differential_p_n_ain” selects PA7 as positive input channel, and GND as
negative input channel.

For “adc_set_all_differential_p _n_ain(ADC_MISC_CHN, gpio_no, GND)”, please see
SDK for code.

5.2.1.3 MUST Use DFIFO for ADC Sampling Valu

For Telink 826x family, ADC result is readable via related register. For TLSR8232, DFIFO
mode is used instead to get ADC result. Please refer to the following function in driver.

unsigned int adc_set_sample_and_get_result(void);

5.2.2 Dedicated Low Battery Detect Demo

In the project “6316_ble_remote” of the “app_config.h” file, set the macro
“BATT_CHECK_ENABLE” to 1, ADC is dedicated for Low Battery Detect. Users can also
refer to the project “56316_ble_remote” for Low Battery Detect demo.

AN-19112700-E1 133 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

5.2.2.1 Initialization of Low Battery Detect
Refer to function “adc_vbat_init”.

ADC initialization must always follow the flow: power off SAR ADC; configure ADC
parameters; power on SAR ADC. TLSR8232 sets SAR ADC as power down by default,
so “adc_vbat_init” does not set power down of “adc_power_on(0)”. TLSR8232 enables
ADC power Every time before reading ADC data and disables ADC power after reading
is completed.

I's not recommended to modify the initialization setting of ADC, users can use the default
setting. However, users can select other GPIO input channel via the macro
“‘BATTERY_CHECK_PIN".

If on HW design, supply is directly connected to GPIO input channel, high level output
needs to be removed from the “BATTERY_CHECK_PIN”.

Below is code of “adc_vbat_init” in “battery_power_check”.
if(ladc_hw_initialized){
adc_hw_initialized = 1;
adc_init();
adc_vbat_init(BATTERY_CHECK_PIN);

}

Herein a variable “adc_hw _initialized” is used to call one initialization. When the variable
is set to 0, one initialization is called, and then the variable should be set to 1 to disable
further initialization.

By using the “adc_hw_initialized” ADC tasks can switch between Low Battery Detect and
other ADC tasks (“ADC other task”).

Due to dynamic ADC task switch, the “adc_vbat_init” may be executed multiple times, so
it must be implemented in the main_loop rather than user_init().

On first calling of “battery_power_check”, “adc_vbat_init” is executed and will not be
executed repeatedly.

To switch to “ADC other task”, for proper initialization in new task, the
“adc_hw_initialized” will be set to 0.

After completion of “ADC other task”, the “battery_power_check” will be executed again.
Since current adc_hw_initialized is 0, the “adc_vbat_init” must be executed again, so as
to guarantee re-initialization on every switch back.

5.2.2.2 Low Battery Detect Processing

In main_loop, the function “battery_power_check” is called to process Low Battery
Detect. Related code is shown as below:

if(clock_time_exceed(lowBattDet_ tick, 500%*1000)){
lowBattDet_tick = clock_time();

battery_power_check(BATTERY_VOL_MIN);

AN-19112700-E1 134 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The “lowBattDet_tick” can be used to set frequency of battery detect. In the demo, the
period is set as 500ms by default, and it can be modified as needed.

Implementation of the “battery_power_check” involves details of battery detect
initialization, DFIFO setup, data acquisition and processing, as well as low voltage
alarming.

Complicated ADC usage and special HW limits may bring user difficulty in understanding.
It is highly recommended to follow the demo code as much as possible. Except a few
settings which is illustrated as modifiable in this document, DO NOT make any change.

DFIFO mode is used to acquire ADC result by sampling 8 times (default), removing the
maximum and minimum and calculating the average of 6 values. As shown in the
“adc_vbat_init”, period for each sampling is 10.4us, so it takes 83us or so to get the
result.

In demo code, the macro “ADC_SAMPLE_NUM” can be changed to 4, so as to reduce
total ADC time to 41us. Sampling 8 times is recommended to get more accurate result. If
users modify the marco definition, the calculation of ADC should be modified accordingly.
The source code is:

u32 adcValueAvg = (adc_sample[2] + adc_sample[3] + adc_sample[4] +
adc_sample[5]) >> 2;

5.2.2.3 Low Battery Voltage Alarm

The parameter “minVol_mV” of the “battery_power_check” specifies secure or alarm
voltage in unit of mV. As explained earlier, default in the SDK is 2000 mV. In low battery
detect of main_loop, once supply voltage drops below 2000mV, MCU enters low voltage
range.

The following shows demo code to process low battery alarm. MCU must be shut down
once it enters low voltage range.

In “6316_ble_remote”, MCU can be shut down by entering deepsleep, and wake up by
key press.

Except mandatory MCU shutdown operation, users can modify other alarm behaviors.

In the code below, alarm indication is set as fast blinking for three times, reminding users
to recharge or replace battery.

if(vol < minvol_mV){
#if (1 & BLT_APP_LED ENABLE) //led indicate
gpio_set output_en(GPIO_LED, 1); //output enable
for(int k=0;k<3;k++){
gpio_write(GPIO_LED, 1);
sleep us(200000);
gpio_write(GPIO_LED, ©);
sleep_us(200000);

}

gpio_set_output_en(GPIO_LED, 9);

ttendif

AN-19112700-E1 135 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

analog_write(DEEP_ANA_REG2, BATTERY_VOL_LOW);

cpu_sleep wakeup(PM_SLeepMode Deep, PM_WAKEUP_PAD, 9);
}

For “6316_ble_remote”, after shutdown at low battery, MCU enters deepsleep which
supports key press wakeup.

At the moment of wakeup by key press, SDK will perform one fast battery detect in user
initialization (function user_init) rather than in main_loop, so as to avoid errors as shown
below.

Given that LED blinking has been issued for low battery, MCU entered deepsleep, but
wakes up from deepsleep by key press. If processed in main_loop, battery detect needs
to wait 500ms at least to be executed ; during this duration Slave could have sent many
advertising packets, and may even connect with master, which will lead to a bug that
device resumes working after low battery alarm.

For this reason, battery detect is performed at user initialization instead. So battery detect
is added in user initialization:

if(analog_read(DEEP_ANA_REG2) == BATTERY_VOL_LOW){
battery_power_check(BATTERY_VOL_MIN + 200);//2.2V

}

else{
battery_power_check(BATTERY_VOL_MIN);//2.0 V

}

Please note that the initialization of GP1O wakeup must be placed before the code above
or it may lead to GPIO wakeup failure.

Value of the analog register “DEEP_ANA_REGZ2” can tell whether it's wakeup from low
battery shutdown. Battery detect after this wakeup will raise 2000mV alarm voltage to
2200mV recover voltage, based on the reason below:

Tolerance in battery detect makes it difficult to ensure consistent result on every
measurement. Given 20mV error, for first time, 1990mV might trigger MCU to shutdown;
however, after wakeup, at user initialization it could be measured at 2005mV, so 2000mV
alarm voltage would lead to the bug above.

Considering this, at battery detect after wakeup from shutdown, alarm voltage is raised
by a value slightly higher than maximum tolerance of low battery detect.

Since the example 2200mV recover voltage only occurs after voltage lower than 2000mV
is detected to shutdown MCU, user does not need to worry that applications would give
low voltage alarm when actual voltage is 2.0~2.2V. End user should recharge or replace
battery at low battery alarm to ensure normal product performance.

AN-19112700-E1 136 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

6. OTA

TLSR8232 supports Flash multi-address booting, addresses including 0, 0x10000,
0x20000, and 0x40000.

To implement OTA for TLSR8232 slave, a device is heeded to act as BLE OTA Master,
which can be the Bluetooth device (supporting OTA in APP) combined with Slave, or
simply Telink BLE Master Dongle. In this section, Telink kma dongle is taken as an
example of OTA Master to illustrate how TLSR8232 BLE OTA is realized.

6.1 Flash Architecture and OTA Procedure
6.1.1 Flash Storage Architecture

When boot from 0x20000, in SDK the default firmware size should not exceed 128K, i.e.
the Flash area 0~0x20000 is for storing firmware.

0x80000

0x40000

0x20000

0x00000

0x80000

0x40000 0x40000 0x40000
RF
transform
. 5
New firmware — 1 Firmware_2.bin Firmware 2.bin gé(, Firmware_3.bin
storage area &
&
&
0x20000 0x20000| é 0x20000
Firmware_l.bin New fi
Ota_master. bin ew_{irmvare Ota_master. bin
storage area
0x00000 0x00000 0x00000
slave ota_master slave ota_master
OTA of the (2n+1)-th time OTA of the (2n+2)-th time

Figure 6-1 5316F512K Flash Storage Structure

1) OTA Master burns new firmware2 into the Master Flash area starting from 0x20000.
2) OTAfor the first time:

a)

b)

When power on, Slave starts booting and executing firmwarel from Flash
0~0x20000.

When firmwarel is running, the area of Slave Flash starting from 0x20000 (i.e.
Flash 0x20000~0x40000) is cleared during initialization and will be used as
storage area for new firmware.

OTA process starts, Master transfers firmware2 into Slave Flash area starting
from 0x20000 via RF. Then Slave sets bootloader to boot from the new firmware
offset and reboots (similar to power cycle).

3) For subsequent OTA updates, OTA Master first burns new firmware2 into the Master
Flash area starting from 0x20000.

AN-19112700-E1 137 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

4) OTAfor the second time:

a) When power on, Slave starts booting and executing firmware2 from Flash
0x20000~0x40000.

b) When firmware2 is running, the area of Slave Flash starting from 0xO0 (i.e. Flash
0~0x20000) is cleared during initialization and will be used as storage area for
new firmware.

c) OTA process starts, Master transfers firmware3 into Slave Flash area starting
from 0x0 via RF. Then Slave sets bootloader to boot from the new firmware
offset and reboots.

5) Subsequent OTA process repeats steps (1)~(4): (1)~(2) represents OTA of the

(2n+1)-th time, while (3)~(4) represents OTA of the (2n+2)-th time.

6.1.2 OTA Update Procedure

Based on the Flash storage structure introduced in section 6.1.1, the OTA update
procedure is illustrated as below:

8232 multi-address booting mechanism: OTA only uses two addresses booting (boot
from O or 0x20000). After MCU is powered on, Slave boots from Flash address 0 by
default. First Flash address 0x8 is read, if its value is Ox4b, the code starting from 0 are
transferred to RAM, and the following instruction fetch address equals 0 plus PC pointer
value; if the value of Flash 0x8 is not Ox4b, MCU directly reads Flash address 0x20008, if
its value is Ox4b, the code starting from 0x20000 are transferred to RAM, and the
following instruction fetch address equals 0x20000 plus PC pointer value.

By modifying flag bit value of Flash 0x8 and 0x20008, the part of Flash code to be
executed will be determined.

In TLSR8232 SDK with OTA function support, the OTA upgrade process of the (2n+1)-th
or (2n+2)-th time is shown as below:

1) After MCU is powered on, read Flash address 0x8 and 0x20008, and compare the
value with 0x4b to determine the booting address; then Slave boots from
corresponding address (0 or 0x20000) and starts executing the code. This function is
automatically completed by MCU hardware.

2) During firmware initialization, read MCU hardware register to judge the booting
address.

a) If booting address is 0, the ota_program_offset is set as 0x20000, and the area
of Slave Flash starting from 0x20000 (i.e. 0x20000~0x40000) will be all erased
to “Oxff”, which indicates the new firmware will be transferred into this area by
Master during the following OTA process.

b) If booting address is 0x20000, the ota_program_offset is set as 0x0, and the
area of Slave Flash starting from 0x0 (i.e. 0~0x20000) will be all erased to 0xff,
which indicates the new firmware will be transferred into this area by Master
during the following OTA process.

3) Slave MCU executes the firmware after booting; OTA Master is powered on and
establishes BLE connection with Slave.

4) Trigger OTA Master to enter OTA mode by Ul (e.g. button press, write memory by PC
tool, etc.). After entering OTA mode, OTA Master needs to obtain Handle value of

AN-19112700-E1 138 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Slave OTA Service Data Attribute (The handle value can be pre-appointed by Slave
and Master, or obtained via “read_by_type”.)

5) After the Atrribute Handle value is obtained, OTA Master may need to obtain version
number of current Slave Flash firmware, and compare it with the version number of
local stored new firmware. This step is determined by user.

6) To enable OTA upgrade, OTA Master will send an OTA_start command to inform
Slave to enter OTA mode.

7) After the OTA_start command is received, Slave enters OTA mode and waits for OTA
data to be sent from Master.

8) Master reads the firmware stored in the Flash area starting from 0x20000, and
continuously sends OTA data to Slave until the whole firmware is sent.

9) After the OTA data are received, Slave stores the data into the area starting from
ota_program_offset.

10) After the OTA data are sent, Master will check if all data are correctly received by
Slave (invoke related BLE function in bottom layer to judge whether Link Layer data
are all correctly acked).

11) After Master confirms all OTA data are correctly received by Slave, it will send an
OTA_END command.

12) After Slave receives the OTA_END command, offset address 8 based on the new
firmware starting address (i.e. ota_program_offset+8) is written with “Ox4b”, and
offset address 8 based on the old firmware starting address is written with “0x00”.
This indicates Slave will execute the firmware from the new area after the next
booting.

13) Slave reboots, and the new firmware will take effect.

14) During the whole OTA upgrade process, Slave will continuously check whether
there’s packet error, packet loss or timeout (A timer is started when OTA starts).
Once packet error, packet loss or timeout is detected, Slave will determine the OTA
process fails. Then Slave reboots, and executes the old firmware.

The OTA related operations on Slave side described above have been realized in 5316

BLE SDK and can be used by user directly. On Master side, extra firmware design is
needed and it will be introduced later.

6.1.3 Modify Firmware Size and Boot Address

The API “bls_ota_setFirmwareSizeAndOffset” supports two functions: modifying
maximum firmware size and booting address in the OTA design. Herein booting address
means the adderss except 0 to store New_firmware, so it should be 0x10000 or 0x20000
or 0x40000.

In SDK, by default, the default maximum firmware size is 128kB, and the booting address
is 0x20000.

void bls_ota_setFirmwareSizeAndOffset(int firmware_size k, u32 boot_addr);

“firmware_size_k” must be 4kB aligned, i.e. it must be integral multiples of 4kB. For
example, for 97kB size, the “firmware_size k” must be set as 100kB.

AN-19112700-E1 139 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

In the main function, since “cpu_sleep_wakeup” contains settings related to
“firmware_size_k” and “boot_addr”, this APl must be called before “cpu_wakeup_init”
takes effect.

If maximum firmware_size exceeds 128kB, booting address needs to be changed to
0x40000. For example, maximum firmware_size may reach 200kB; corresponding setting
should be:

bls_ota_setFirmwareSizeAndOffset (200, 0x40000);

By using this API, not only booting address can be modified, but also Flash area usage
can be optimized.

By default, maximum firmware size is 128kB, and the Flash space 0x00000 ~ 0x40000
can be used to store firmware only. If firmware does not need such a large area, e.g. FW
size does not exceed 60kB, only part of the two 128kB space (0x00000 ~ 0x20000,
0x20000 ~ 0x40000) are used.

To use the redundant space as data storage area, the setting below can be followed.
bls_ota_setFirmwareSizeAndOffset (60, 0x20000);

By the configuration above, the two 60kB Flash areas 0x00000 ~ OxOF000 and 0x20000
~ 0x2F000 can be used as firmware storage space, while the two 68kB Flash areas
0xOF000 ~ 0x20000 and 0x2F000 ~ 0x40000 can be used as user data storage space.

The situation in TLSR8232F128 OTA is essentially the same as TLSR8232F512, just
change offset 0x20000 to 0x10000.

The following should be noted:

1) For TLSR8232F128, the default firmware size of SDK is 48kB.
2) For TLSR8232F128, by modifying the SDK configuration the maximum firmware size
can be up to 56kB but there will be no extra Flash space for storing user data.

See figure below:

020000 0x20000+ Ox 20000+

MAC address+ MAC address+ MAC address+
Ox1f000+ O 1f000+ Ox1f000+

Customed value+ Customed value+ Customed value+

Ox1e0Q00 Ox1e000 0x1e000

Pair&sec info+ o User Data Area+
oxico0ppmpmm———/ ™ |

OTA Mew bin Storage Area« “

+

OTA New hin Storage Area+
OTA Mew bin Storage Area+

Ox 10000 Ox 10000+ Ox 1000
User Data Area+ Pair&Ssec info+ Pair&Sec info«
0X0e00! s s TSR —
+ User Data Area+
00—l B e
Old Firmware hin+ o

+

Old Firmware bine Old Firmware bin+

0x00000+ Da00000+ 0x00000+
Case 1+ Case 2+ Case 3+

AN-19112700-E1 140 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Case 1 is the default distribution, the maximum firmware size is 48kB with 16kB left for
User Data Area.

If 52K < firmware size <=56K, users can use Case 2 which has no extra Flash space for
user data.

If 48K < firmware size <=52K, users can use Case 3 which has extra Flash area for user
data.

For Case 2 and Case 3, the API below should be called to set actual firmware size
(firmware size should be 4kB aligned), and ota_offset should be set to 0x10000.

void bls_ota_setFirmwareSizeAndOffset(int firmware_size_k, u32 ota_offset);

6.2 RF Data Proceesing in OTA Mode
6.2.1 OTA Processing in Attribute Table on Slave Side

First, OTA reference needs to be added to app_att.c which includes the Attribute Table:
#include <stack/ble/ble.h> //includes the reference of ble Il _ota.h.

Second, add OTA related contents in the Attribute Table. The “att_readwrite_callback_t r’
and “att_readwrite_callback_t w” of the OTA data Attribute should be set as otaRead and
otaWrite, respectively; the attribute should be set as Read and Write_without_Rsp
(Master sends data via Write Command, and does not need Slave to respond with ack to
enable faster speed).

static u8 my_OtaProp= CHAR_PROP_READ | CHAR_PROP_WRITE_WITHOUT_RSP;

{0,2,1,1,(u8*)(&my_characterUuUlID), (u8*)(&my_OtaProp), 0},
{0,2,1,1,(u8*)(&my_OtaUUID), (&my_OtaData), &otaWrite, &otaRead},

{0,2,sizeof (my_OtaName), sizeof (my_OtaName),(u8*)(&userdesc_UUID),
(u8*)(my_OtaName), 0},

When Master sends OTA data to Slave, it actually writes data to the second Attribute as
shown above, so Master needs to know the Attribute Handle of this Attribute in the
Attribute Table. To use the Attribute Handle value pre-appointed by Master and Slave,
user needs to count the Attribute Handle value, and then define it on Master side.

AN-19112700-E1 141 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

6.2.2 OTA Data Packet Format

Master sends command and data to Slave via “Write Command” in L2CAP layer.

3.4.5 3 Wite Command

The Wrte Command is used to request the server to write the value of an attri-
bute, typically into a control-point attribute.

Parameter Size (octets) Description

Attribute Opcode 1 0x52 = Write Command

Attribute Handle 2 The handle of the attribute to be
set

Aftribute Value 0to (ATT_MTU-3) The value of be written to the attri-
bute

Figure 6-2 Write Command Format in BLE Stack

The Attribute Handle value is the handle_value of OTA data on Slave side. The Attribute
Value length is set as 20, and the format is shown as below.

OTA_cmd
0 1 19
OTA_CMD invalid data
0o 1 2 OTA_data 17 18 19
adr_ index firmware data:adr index*16 — adr index*16+15 CRC

Figure 6-3 Format of OTA Command and Data

When the first two bytes are 0xff00 ~0xff10, it indicates it's an OTA command, and the
command type is determined by the two bytes:

1) O0Oxff00: OTA_FW_VERSION, request to obtain current Slave firmware version
number. This command is reserved and optional. To use this command,
corresponding callback function is available on Slave side for user to transfer
firmware version number.

2) O0xff0l: OTA_Start command. To start OTA upgrade process, Master needs to send
this command to Slave.

3) Oxff02: OTA_end command. When Master confirms all OTA data are correctly
received by Slave, it will send this command, which can be followed by four valid
bytes to double check Slave has received all data from Master.

4) 0xff03 ~ 0xffOf: reserved for future use.

When the first two bytes are 0~0x1000, it indicates it's an OTA data. Each OTA data
packet transfers 16-byte firmware data, and the adr_index is the actual firmware address
divided by 16. “adr_index=0" indicates OTA data are values of firmware addresses
0x0~0xf; “adr_index=1" indicates OTA data are values of firmware addresses 0x10~0x1f.
The last two bytes are the CRC value calculated by CRC_16 operation to the former 18
bytes. After Slave receives the OTA data, it will also carry out CRC calculation, the data

AN-19112700-E1 142 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

will be regarded as valid only when the result matches the CRC (191"~20™ byte) of the
data.

6.2.3 RF Transfer Processing on Master Side

Since BLE link-layer RF data will be automatically responded with ack to avoid packet

loss, during OTA data transfer Master won’t check if every OTA data is responded with
ack, that is, after sending an OTA data via write command, Master won’t check if there’s
ack response from Slave by software, and directly push the following data into TX buffer
as long as the number of data to be sent in TX buffer does not reach the threshold.

The OTA Master processes RF transfer by software as below:

1) Check if there’s any action to trigger entering OTA mode. If so, Master enters OTA
mode.

2) To send OTA commands and data to Slave, Master needs to know the Attribute
Handle value of current OTA data Attribute on Slave side. Users can decide to
directly use the pre-appointed value or obtain the Handle value via “Read By Type
Request”. UUID of OTA data in Telink BLE SDK is always 16-byte value as shown
below:

#define TELINK SPP_DATA OTA
{0x12,0x2B, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04,

0x03,0x02,0x01,0x00} //!< TELINK SPP data for ota

In “Read By Type Request” from Master, the “Type” is set as the 16-byte UUID. The
Attribute Handle for the OTA UUID is available from “Read By Type Rsp” responded
by Slave. In the figure below, the Attribute Handle value is shown as “0x0031”.

1 Data Type Data Header L2CAP Header ATT_Read_By_Type_Req
e LLID NESN SN MD POU-Length ||L2CAP-Length ChanlId ||Opcode StartingHandle EndingHandle AttType
L2cAP-S || 2 00 0 25 0x0015 00004 [|0x08 0x0001 OxEFFF 12 2B 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00
] Data Header RSSI
DataType (., Fsy sy MpD POU-Length T (aBm) [|FCS
Empty PDU|| 1 1 1 a0 [0xeFEFDC|_ 0 || ok |
1 Data Header L2CAP Header ATT_Read_By_Type_Rsp RSSI
Data Ty CRC FCS
YPe|lILTD WESN SN MD EDU-Length |L2CAP-Tength Chanld ||Opcode Length AttData {dBm)
L2caP-S || 2 [] 0x0005 0x0004 [|0x09 0x03 31 00 00 ox79893F| o | oK

Figure 6-4 Master Obtains OTA Attribute Handle via “Read By Type Request”

3) (optional) Obtain current Slave firmware version number. User can check if it's the
newest version and decide whether to start OTA upgrade correspondingly.
In 5316 BLE SDK, user needs to determine the method to obtain FW version
number.
An OTA version command is reserved, however, the transfer of version number is

not realized in current 5316 BLE SDK. An “OTA version cmd” can be sent to Slave in

the form of “write cmd”; Slave only supplies a callback function after it receives the
request, and user needs to decide in the callback function how to transfer Slave
firmware version number to Master (e.g. manually send a NOTIFY/INDICATE data).

4) Start a timer when OTA starts, and continuously check if the count value exceeds the

timeout duration (e.g. 15s, only for reference). If so, it's regarded as OTA failure due

to timeout. Since Slave will check CRC after the OTA data are received, once there’s

CRC error or any other error (e.g. Flash burning error), OTA fails, and firmware is

AN-19112700-E1 143 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

directly rebooted; the link layer can’t respond to Master with ack, and Master fails to
send data until timeout.

5) Read four bytes of Master Flash 0x20018~0x2001b to determine firmware size
which is realized by compiler. Suppose firmware size is 20k (0x5000), the value of
firmware 0x18~0x1b is 0x00005000, so the firmware size can be read from
20018~0x2001b. As shown below, 0x18~0x1b of “5316_remote.bin” is
“Ox00005a98”, so the firmware size is 0x5a98, i.e. 23192 bytes from 0 to 0x5a97.

- R —— ' ' §o—— me - - . - . P — - ;— J— f—

|:|3257_remote.bin.3|

Addregs Ol 23 4o e T8 9 rablcd| et
Qoo00000 Qe 80 01 032 00 00 00 00 4k 4e 4c 54 250 01 38 00
Q0000010 oHe 80 00 OO0 OO 00 OO 0O %8 bHa 00 OO OO0 OO QOO 0O

goaoaonz20 25 08 26 09 26 Oa 91 02 0Z ca 08 50 04 bl fa 87
nooonn=sn 14 08 ~0 /TR 0O/ BRR 0OA 15 N8 -0 A T4 0OR RR 0OA

Figure 6-5 Firmware: Starting Part

00005a40 02 03 04 05 00 01 02 O3 04 05 00 00 el 77 ad 92
00005a30 24 ab dc ka 13 02 f1 0 df ce kbd ac 02 01 00 00
00005a60 04 01 OO0 OO 08 01 0O OO0 40 01 00 0O 10 03 00 00
00o05ay0 20 03 00 00 40 03 00 OO0 80 03 00 0O 01 04 0O 0O
00005a80 02 04 00 00 S5c 58 00 Q0 Zc 58 00 00 44 58 00 0O
0ooo05a%0 44 58 00 00 01 Q0 QO 0O

Figure 6-6 Firmware: Ending Part

6) Master sends an OTA start command “0Oxff01” to Slave, so as to inform it to enter
OTA mode and wait for OTA data from Master, as shown below.

Data Header L2CAP Header ATT_Write_Command CRC RSSI FCS
LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld |[Opcode AttHandle AttWalue (dBm)

L2CAP-5 || 2 0 1] 1 9 0x0005 0x0004 | 0x52 0x0031 01 FF 0x61875B 1] oK |

Data Type

Figure 6-7 Master Sends “OTA start”

7) Read 16-byte firmware each time starting from Master Flash 0x20000, assemble
them into OTA data packet, set corresponding adr_index, calculate CRC value, and
push the packet into TX FIFO, until all data of the firmware are sent to Slave. OTA
data format is used in data transfer: 20-byte valid data contains 2-byte adr_index,
16-byte firmware data and 2-byte CRC value to the former 18 bytes.

Note: If firmware data for the final transfer are less than 16 bytes, the remaining
bytes should be complemented with “Oxff” and need to be considered for CRC
calculation.

The 5316_remote.bhin as shown in Figure 6-5 and Figure 6-6 is taken as an example
to illustrate how to assemble OTA data.

Data for first transfer: “adr_index” is “Ox00 00”, 16-byte data are values of addresses
0x0000 ~ 0x000f. Suppose CRC calculation result for the former 18 bytes is
“OxXYZW”, the 20-byte data should be:

0x00 O0x00 O0xOe 0x80 ... (12 bytes not listed)... 0x88 0x00 OxZW OxXY

AN-19112700-E1 144 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Data for second transfer:

0x01 O0x00 Ox5e 0x80 ... (12 bytes not listed)... 0x00 0x00 OxJK OxHI
Data for third transfer:

0x02 0x00 0x25 O0x08 ... (12 bytes not listed)... Oxfa 0x87 OxNO OxLM
Data for penultimate transfer:

Oxa8 O0x05 0x02 0x04 ... (12 bytes not listed)... 0x00 0x00 OxST OxPQ
Data for final transfer:

Oxa9 Ox05 0x44 0x58 O0x00 0Ox00 Ox01 Ox00 0x00 0x00

Oxff Oxff Oxff Oxff Oxff Oxff Oxff Oxff OxWX OxUV

Since the firmware data for final transfer are only 8 bytes, eight “Oxff” are added to

complement 16 bytes. CRC calculation result for the former 18 bytes (0xa9 ~ Oxff) is
“OXUVWX”.

Data Header L2CAP Header ATT_Write_C RSSI

Data Ty CRC FCS
YPElILID WESN SN MD EDU-Length ||L2CAP-Length Chanld | Opcode AttHandle ActValue (dBm)
L2caps || 2 0 0 1 3 0x0005 0x0004 [|0x52 0x0031 01 FF ox61875B || o || ox |
Data Header RSSI
Data Ty CRC FCs
YP® |ILID WESN SN MD FDU-Length (dBm)
Empty POU| 1 1 0 o 0 oxeFE272 || 0 [ox
Data Type Data Header L2CAP Header ATT_Write_Cq
LLID NESN SN MD EDU-Length ||L2CAP-Length Chanld ||Opcode AtcHandle ActValue
L2cAP-5 || 2 11 1 27 0x0017 0x0004 [|0x52 0x0031 00 00 0E 80 01 03 00 00 00 00 4B 4E 4C 54 80 01 8& 00 BA A5
Data Header RSSI
Data Ty CRC FCSs
YP® |lLtp NESW SN D PDU-Length (dBm)
Empty POU| 1 0 1 o 0 oxeFER0F || 0 [oK
Data Type Data Header L2CAP Header ATT_Write_C
YPEIlLLID WESN SN MD FOU-Length |L2CAP-Length Chanld |/Opcode AttHandle ActValue
L2caps || 2 0 0 1 27 0x0017 0x0004 [|0x52 0x0031 01 00 SE 80 00 00 00 00 00 00 98 SA 00 00 00 00 00 00 EA EF
Data Header RSSI
Data Ty CRC FCs
YP® |ILID WESN SN MD FDU-Length (dBm)
Empty POU| 1 1 0 o 0 oxeFE272 || 0 [ox
Data Type Data Header L2CAP Header ATT_Write_Cq
LLID NESN SN MD EDU-Length ||L2CAP-Length Chanld ||Opcode AtcHandle ActValue
L2cAP-5 || 2 1 1 0 27 0x0017 0x0004 [|0x52 0x0031 02 00 25 08 26 09 26 OA 91 02 02 CA 08 50 04 Bl FA 87 A7 0D
Data Type Data Header L2CAP Header ATT_Write_Ct
YP®|LLID NESN SN MD PDU-Length ||L2CAP-Length Chanld [|Opcode AttHandle Attvalue
L2CAPS || 2 0 0 1 27 0x0017 0x0004 [|0x52 00031 10 05 44 58 00 00 01 00 00 00 FF FF FF FF FF FF FF FF 44 47
Data Header RSSI
Data Ty CRC FCS
¥P® |lILID WESN SN MD EDU-Length (dBm)
Empty POU|| 1 1 0 o0 0 oxeFE272 |0 || oK |
Data Header L2CAP Header ATT_Write_Ci RSSI
Data Ty =i CRC FCs
YP®|IIID WESN SN MD PDU-Length || L2CAP-Length Chanld [|Opcode AttHandle Atcvalue (dBm)
L2CAPS || 2 1 1 o0 13 0x0009 0x0004 [|0x52_ 0x0031 02 FF 29 05 56 FA|| OxE13FEA|_ 0 | OK |

Figure 6-8 Master OTA Data

8) After firmware data are sent, Master checks if BLE link-layer data are all sent out
(Only when link-layer data is acked by Slave, it's considered the data is sent
successfully). If all data are sent, Master will send an ota_end command to inform
Slave.

“OTA end” packet is set as 6 valid bytes: first two bytes are “0xff02”, followed by
maximum adr_index value of new firmware (the two bytes are used to double check
if there’re OTA data lost on Slave side), the final two bytes are inverted value of the
maximum adr_index (equivalent to simple check). CRC check is not needed for
“OTA end”.

AN-19112700-E1 145 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

9)

The maximal adr_index and inverted value of “6316_remote.bin” are “Ox05a9” and
“Oxfab6”, respectively. Figure 6-8 shows the final OTA end packet.

Check if link-layer TX FIFO on Master side is empty: If it's empty, it indicates all data
and commands in above steps are sent successfully, i.e. OTA process on Master
succeeds.

Please refer to Appendix for CRC_16 calculation function.

6.2.4 RF Receive Processing on Slave Side

As introduced above, Slave can directly invoke the otaWrite and otaRead in OTA
Attribute. After Slave receives write command from Master, it will be parsed and
processed automatically in BLE stack by invoking the otaWrite function.

In the otaWrite function, the 20-byte packet data will be parsed: first judge whether it's
OTA CMD or OTA data, then process correspondingly (respond to OTA cmd; check CRC
to OTA data and burn data into specific addresses of Flash).

The OTA related operations on Slave side are shown as below:

1)

2)

OTA_FIRMWARE_VERSION command is received (first two bytes are 0xff00):
Master requests to obtain Slave firmware version number.

In 5316 BLE SDK, after Slave receives this command, it will only check whether
related callback function is registered and determine whether to trigger the callback
function correspondingly.

The interface in ble_lI_ota.h to register this callback function is:

typedef void (*ota versionCb t) (void);

void bls_ota_ registerVersionReqCb (ota versionCb t cb);

OTA start command is received (first two bytes are 0xff01): Slave enters OTA mode.
If the “bls_ota_registerStartCmdCb” function is used to register the callback function
of OTA start, then the callback function is executed to modify some parameter states
after entering OTA mode (e.g. disable PM to stabilize OTA data transfer).

Slave starts and maintains a slave_adr_index to record the adr_index of the latest
correct OTA data. The initial value of slave_adr_index is -1, and it's used to judge
whether there’s packet loss in the whole OTA process; if so, OTA fails, Slave MCU
exits OTA and reboots, since Master can’t receive any ack packet from Slave, it will
discover OTA failure by software after timeout.

The following interface is used to register the callback function of OTA start:

typedefvoid (*ota startCb t) (void);

void bls_ota registerStartCmdCb (ota startCb t cb);

User needs to register this callback function to carry out operations when OTA starts,
for example, configure LED blinking to indicate OTA process. After Slave receives
“OTA start”, it enters OTA and starts a timer (The timeout duration is set as 15s by
default in current SDK). If OTA process is not finished within the duration, it's
regarded as OTA failure due to timeout. Users can evaluate firmware size (larger
size takes more time) and BLE data bandwidth on Master (narrow bandwidth will

AN-19112700-E1 146 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

3)

4)

5)

influence OTA speed), and modify this timeout duration accordingly via the interface
as shown below.

void bls_ota_setTimeout (u32 timeout us);// unit: us

Valid OTA data are received (first two bytes are 0~0x1000):

Whenever Slave receives one 20-byte OTA data packet, it will first check if the
adr_index equals slave_adr_index plus 1. If not equal, it indicates packet loss and
OTA failure; if equal, the slave_adr_index value is updated.

Then carry out CRC_16 check to the former 18 bytes; if not match, OTA fails; if
match, the 16-byte valid data are written into corresponding addresses of Flash
(ota_program_offset+adr_index*16 ~ ota_program_offset+adr_index*16 + 15).
During Flash writing process, if there’s any error, OTA also fails.

“OTA end” command is received (first two bytes are 0xff02):

Check whether adr_max in OTA end packet and the inverted check value are
correct. If yes, the adr_max can be used to double check whether maximum index
value of data received by Slave from Master equals the adr_max in this packet. If
equal, OTA succeeds; if not equal, OTA fails due to packet loss.

After successful OTA, Slave will set the booting flag of the old firmware address in
Flash as 0, set the booting flag of the new firmware address in Flash as 0x4b, then
MCU reboots.

Slave provides OTA state callback function:

After Slave starts OTA, MCU will finally reboot regardless of OTA result. If OTA
succeeds, Slave will set flag before rebooting so that MCU executes the new
firmware; if OTA fails, the incorrect new firmware will be erased before rebooting, so
that MCU still executes the old firmare. Before rebooting, user can judge whether the
OTA state callback function is registered and determine whether to trigger it
correspondingly.

typedef void (*ota resIndicateCb t) (int result);

enum {
OTA SUCCESS = 0, //success
OTA PACKET LOSS, //lost one or more OTA PDU
OTA DATA CRC_ERR, //data CRC err

OTA WRITE FLASH ERR, //write OTA data to Flash ERR
OTA DATA UNCOMPLETE, //lost last one or more OTA PDU

OTA TIMEOUT, //

void bls_ota_registerResultIndicateCb

(ota_resIndicateCb_t cb);

The “enum?” lists the 6 options for parameter “result”: the first value indicates OTA
success; the other five values indicate reasons for OTA failure. The “result” is mainly

AN-19112700-E1 147 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

used for debugging: When OTA fails, user can read the “result”, stop MCU by using
“while(1)”, and find the reason for current OTA failure.
LED indication can be added to indicate OTA success, as shown below:

void LED_show_ota_result (int result)
{
irg disable();

WATCHDOG DISABLE;
gpio_set output en(GPIO LED, 1);

if (result == OTA SUCCESS){ //OTA success
gpio write (GPIO LED, 1);
sleep us(2000000); //led on for 2s
gpio write (GPIO LED, 0);

}

else{ //OTA fail

gpio_set output en(GPIO LED, O0);

bls ota registerResultIndicateCb (LED show ota result);

The otaWrite function in Slave is assembled in lib, other related interfaces are available
in stack/ble/service/ble_|l_ota.h of SDK.

AN-19112700-E1 148 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

7. Key Scan

Keyscan architecture based on row/column scan is used to detect and process key state
update (press/release). Users can directly use the sample code, or realize the function by
developing his own code.

7.1 Key Matrix

Take Telink 5316 BLE remote demo board as an example: It's a 5*6 matrix and supports
up to 30 buttons. Five drive pins (Row0~Row4) are used to output drive level, while six
scan pins (CoLO~CoL5) serve to scan for button press in current column.

VCC VCC vCC vCC vcC vcc

Jn0g0

. Row0 It
Drive
Row1l II-
Row?2 II-
Pin Row3 i
Row4 It
Col0 ———
Scan
Col2
Col3
P 1 n Col4
Col5

Figure 7-1 Row/Column Key Matrix
Keyscan related configurations in app_config.h are shown as below:

On Telink demo board, Row0~Row4 pins are PA5, PA4, PA3, PA2, and PAL1, while
CoL0~ColL5 pins are PC6, PC5, PC4, PC3, PC2, and PC1.

Define drive pin array and scan pin array:
#define KB_DRIVE_PINS {GPIO_PA5, GPIO_PA4, GPIO_PA3, GPIO_PA2, GPIO_PA1}

#define KB_SCAN_PINS {GPIO_PC6, GPIO PC5, GPIO_PC4, GPIO PC3, GPIO PC2,
GPIO PC1}

Keyscan adopts analog pull-up/pull-down resistor in TLSR8232 IC: drive pins use 100K
pull-down resistor, and scan pins use 10K pull-up resistor. When no button is pressed,

scan pins act as input GP10s and read high level due to 10K pull-up resistor. When key
scan starts, drive pins output low level; if low level is detected on a scan pin, it indicates
there’s button pressed in current column (Note: Drive pins are not in float state, if output

AN-19112700-E1 149 Ver.1.0.0

/TELIN
"EM'COND“‘TOR& Telink TLSR8232 BLE SDK Developer Handbook

is not enabled, scan pins still detect high level due to voltage division of 100K and 10K
resistor.)

Define valid voltage level detected on scan pins when drive pins output low level in
Row/Column scan:

#define KB LINE HIGH VALID 0

Define pull-up resistor for scan pins and pull-down resistor for drive pins

#define MATRIX ROW_PULL PM_PIN PULLDOWN 100K

#define MATRIX COL PULL PM_PIN PULLUP 10K

#define PULL_WAKEUP_SRC_PA5
#define PULL_WAKEUP_SRC_PA4
#define PULL_WAKEUP_SRC_PA3
#define PULL_WAKEUP_SRC_PA2

#define PULL_WAKEUP_SRC_PA1

#define PULL_WAKEUP_SRC_PC6
#define PULL_WAKEUP_SRC_PC5
#define PULL_WAKEUP_SRC_PC4
#define PULL_WAKEUP_SRC_PC3
#define PULL_WAKEUP_SRC_PC2

#define PULL_WAKEUP_SRC_PC1

Since “ie” of general GPIOs is set as 0 by default in gpio_init, to read level on scan pins,

MATRIX_ROW_PULL
MATRIX_ROW_PULL
MATRIX_ROW_PULL
MATRIX_ROW_PULL

MATRIX_ROW_PULL

MATRIX_COL_PULL
MATRIX_COL_PULL
MATRIX_COL_PULL
MATRIX_COL_PULL
MATRIX_COL_PULL

MATRIX_COL_PULL

corresponding “ie” should be enabled.

#define PC6_INPUT_ENABLE
#define PC5_INPUT_ENABLE
#define PC4_INPUT_ENABLE
#define PC3_INPUT_ENABLE
#define PC2_INPUT_ENABLE

#define PC1_INPUT_ENABLE

1

1

When MCU enters suspend or deepsleep, it's needed to configure CORE/PAD GPIO
wakeup. Set drive pins as high level wakeup; when there’s button pressed, drive pin
reads high level, which is 10/11 VCC (i.e. VCC * 100K/(100K+10K)). To read level state
of drive pins, corresponding “ie” should be enabled.

#define PA5_INPUT_ENABLE 1

AN-19112700-E1 150 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
#define PA4_INPUT_ENABLE 1
#define PA3_INPUT_ENABLE 1
#define PA2_INPUT_ENABLE 1
#define PA1_INPUT_ENABLE 1

7.2 Keyscan, Keymap and Keycode
7.2.1 Keyscan

After configuration as shown in section 7.1, the function below is invoked in mainloop to
implement keyscan.

u32 kb_scan key (int numlock status, int read key)

< numlock_status: Generally set as 0 when invoked in mainloop. Set as
“KB_NUMLOCK_STATUS POWERON?” only for fast keyscan after wakeup from
deepsleep (refer to section 7.5, corresponding to
DEEPBACK_FAST_KEYSCAN_ENABLE).

< read_key: Buffer processing for key values, generally not used and set as 1 (if it's set
as 0, key values will be pushed into buffer and not reported to upper layer).

< The return value is used to inform user whether matrix keyboard update is detected
by current scan: if yes, return 1; otherwise return 0.

The kb_scan_key function is invoked in mainloop. As introduced in section 3.2.4, each
main loop is an adv_interval or conn_interval. In advertising state (suppose adv_interval
is 30ms), key scan is processed once for each 30ms; in connection state (suppose
conn_interval is 10ms), key scan is processed once for each 10ms.

In theory, when button states in matrix are different during two adjacent key scans, it's
considered as an update. In actual code, a debounce filtering processing is enabled: It
will be considered as a valid update, only when button states stay the same during two
adjacent key scans, but different with the latest stored matrix keyboard state. “1” will be
returned by the function to indicate valid update, matrix keyboard state will be indicated
by the structure “kb_event”, and current button state will be updated to the newest matrix
keyboard state. Corresponding code in keyboard.c is shown as below:

unsigned int key debounce_ filter (u32 mtrx cur[], u32 filt en);

The newest button state means press or release state set of all (30) buttons in the matrix.
When power on, initial matrix keyboard state shows all buttons are “released” by default,
and debounce filtering processing is enabled; as long as valid update occurs to the
button state, “1” will be returned, otherwise “0” will be returned. For example: press a
button, a valid update is returned; release a button, a valid update is returned; press
another button with a button held, a valid update is returned; press the third button with
two buttons held, a valid update is returned; release a button of the two pressed buttons,
a valid update is returned......

7.2.2 Keymap &kb_event

If a valid button state update is detected by invoking the “kb_scan_key”, user can obtain
current button state via a global structure variable “kb_event”.

AN-19112700-E1 151 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

#define KB RETURN KEY MAX 6

typedef struct/{
u8 cnt;
u8 ctrl key;
u8 keycode [KB RETURN KEY MAX];
}kb data t;
kb data t kb event;
The “kb_event” consists of 8 bytes:
“ent” is used to indicate valid count number of pressed buttons currently;

“ctrl_key” is not used generally, and it will be used only for standard USB HID keyboard
(user is not allowed to set keycode in keymap as 0xe0~0xe7).

keycode[6] indicates keycode of up to six pressed buttons can be stored (if more than six
buttons are pressed actually, only the former six can be reflected).

Keycode definition of 30 buttons in app_config.h is shown as below:
#define KB_MAP_NORMAL {\
{VK_NONE, VK_UP, VK_ENTER, VK_DOWN, VK_NONE}, \

{KEY_MODE_SWITCH, VK_LEFT, CR_MENU, CR_VOL_MUTE, VK_RIGHT}, \

{VK_POWER, CR_HOME, VK_7, VK_2, CR_BACK}, \
{VK_NONE, CR_VOL_DN, VK_NONE, VK_5, CR_VOL_UP}, \
{VK_NONE, VK_1, VK_0, VK_8, VK_3}, \
{VK_NONE, VK_4, VK_NONE, VK_9, VK_6}, }

The keymap follows the format of 5*6 matrix structure. The keycode of pressed button
can be configured accordingly, for example, the keycode of the button between Row0
and ColL1is “VK_UP”.

In the “kb_scan_key” function, the “kb_event.cnt” will be cleared before each scan, while
the array “kb_event.keycode[]” won’t be cleared automatically. Whenever “1” is returned
to indicate valid update, the “kb_event.cnt” will be used to check current valid count
number of pressed buttons.

1) If current kb_event.cnt = 0, previous valid matrix state “kb_event.cnt” must be
uncertain non-zero value; the update must be button release, but the released button
number is uncertain. Data in kb_event.keycode]] (if available) is invalid.

2) If kb_event.cnt = 1, the previous kb_event.cnt indicates button state update. If
previous kb_event.cnt is 0, it indicates the update is one button is pressed; if
previous kb_event.cnt is 2, it indicates the update is one of the two pressed buttons
is released; if previous kb_event.cnt is 3, it indicates the update is two of the three
pressed buttons are released......
kb_event.keycode[0] indicates the key value of currently pressed button. The
subsequent keycodes are negligible.

3) Ifkb_event.cnt = 2, the previous kb_event.cnt indicates button state update. If
previous kb_event.cnt is O, it indicates the update is two buttons are pressed at the

AN-19112700-E1 152 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

same time; if previous kb_event.cnt is 1, it indicates the update is another button is
pressed with one button held; if previous kb_event.cnt is 3, it indicates the update is
one of the three pressed buttons is released......

kb_event.keycode[0] and kb_event.keycode[1] indicate key values of the two
pressed buttons currently. The subsequent keycodes are negligible.

User can manually clear the “kb_event.keycode” before each key scan, so that it can be
used to check whether valid update occurs, as shown in the example below.

In the sample code, when kb_event.keycode [0]iS not zero, it's considered a button is
pressed, but the code won’t check further whether two buttons are pressed at the same
time or one of the two pressed buttons is released.

kb _event.keycode[0] = 0; //manually clear keycode[0]

int det key = kb scan key (0, 1);

if (det key)
{

key not released = 1;

u8 key = kb event.keycode[0];
if (key) /Ikey press
{

key buf[2] = key;

/Isend key press

blt push notify data (HID HANDLE KEYBOARD REPORT, key buf,
8) 7

else

key not released = 0;
key buf[2] = 0;
/Isend key release

blt push notify data (HID HANDLE KEYBOARD REPORT, key buf,
8);

AN-19112700-E1 153 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

7.3 Keycode

The section above introduces keymap definition in app_config.h and keycode filling in
KB_MAP_NORMAL. To realize standard USB HID keyboard, some special keycodes
need to be processed, so user should pay attention to details for keycode definition.

The “kb_remap_key_row” function in keyboard.c serves to process keycode.

void kb_remap key row(int drv_ind, u32 m, int key max, kb data t

*kb data)

lstatic inline veoid kb remap key row(int drv ind, u32 m, int key max, ki data t *kb data){
foreach arr(i, scan pins){
if(m & 0Ox01){
[ug kc = kb k mp[i] [drv_ind]:
I #if (KB_HAS CTRL KEYS)

if(kc >= VK CIRL && kc <= VK _EWIN)
kb data->ctrl_key |= BIT (kc - VE_CTRL):
f/felse if (ke == VE_MEDIA END)
//lock button pressed = 1;
else if (VK ZOOM IN == kc || VE ZOOM OUT == kc){
kb data->ctrl key |= VK MSK LCTRL;
kb _data->keycode[kb data->cnt++] = (VE Z00M IN == kc)? VE_EQUAL : VE MINUS
}
elze if(kc != VK FN)//fix fn ghost bug
kb data->keycode[kb data->cnt++] = kc;

"f#else
| kb data->keycode[kb data->cnt++] = kc;
ifendif
if (kb data->cnt >= key max){

break:

}

m=m > 1;
if(!m) {
break;

Figure 7-2 Keycode Processing Function

CTRL KEY will be obtained by kb_event.ctrl_key, and its keycode ranges from 0xe0 to
0xe7 which cannot be used by users.

In proj/drivers/usbkeycode.h:

#define VK _CTRL 0xe0
#define VK_SHIFT Oxel
#define VK_ALT Oxe2
#define VK WIN Oxe3
#define VK_RCTRL Oxed
#define VK _RSHIFT Oxeb
#define VK RALT Oxeb6
#define VK _RWIN Oxe7

AN-19112700-E1 154 Ver.1.0.0

“EM'CO"D"CTOR& Telink TLSR8232 BLE SDK Developer Handbook

For the following key values, after they are transferred by Slave to Telink Master Dongle,
special processing will be realized by PC, and it depends on report descriptor
configuration of BLE HID in app_att.c.

enum {

VK _EXT START = 0xa0,

VK _SYS START = VK _EXT START, //Oxa0

VK _SLEEP = VK _SYS START, //0xa0, sleep
VK_POWER, /[0xal, power
VK _WAKEUP, //0xa2, wake-up
VK _SYS END, /I0xa3

VK SYS CNT = (VK _SYS END - VK SYS START) ,//0xa3-0xa0=0x03
VK MEDIA START = VK _SYS END, /I0xa3

VK W _SRCH = VK MEDIA START, [//Oxa3

VK _WEB, /I0xa4

VK W _BACK,

VK _W_FORWRD,

VK W _STOP,

VK W _REFRESH,

VK W _FAV, //0xa9
VK _MEDIA,

VK MAIL,

VK CAL,

VK MY COMP,

VK _NEXT TRK,

VK PREV TRK,
VK_STOP, / /b0
VK _PLAY PAUSE,

VK W MUTE,

VK VOL UP,

VK_VOL DN,

VK_MEDIA END,
VK_EXT END = VK_MEDIA END,

VK_MEDIA CNT = (VK_MEDIA END - VK _MEDIA START),//0xb5-0xa3=0x12

AN-19112700-E1 155 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
VK _ZOOM IN = (VK_MEDIA END + 1),//0xb6
VK_ZOOM OUT , 110xb7

7.4 Keyscan Flow

7.4.1 Basic Keyscan Flow

When kb_scan_key is called, a basic keyscan flow is shown as below:

1) Initial full scan through the whole matrix.
All drive pins output drive level (0). Meanwhile read all scan pins, check for valid
level, and record the column on which valid level is read. (The scan_pin_need is
used to mark valid column number.)
If row-by-row scan is directly adopted without initial full scan through the whole
matrix, each time all rows (five rows in current demo firmware) should be scanned at
least, even if no button is pressed. To save scan time, initial full scan through the
whole matrix can be added, thus it will directly exit keyscan if no button press is
detected on any column.

scan_pin need = kb key pressed (gpio);

In the function kb_key_pressed, all rows output low level, and stabilized level of scan
pins will be read after 20us delay. A release_cnt is set as 6; if a detection shows all
pressed buttons in the matrix are released, it won’t consider no button is pressed
and stop row-by-row scan immediately, but buffers for six frames. If six successive
detections show buttons are all released, it will stop row-by-row scan. Thus key
debounce processing is realized.

2) Scan row by row according to full scan result through the whole matrix.
If button press is detected by full scan, row-by-row scan is started: Drive pins
(ROWO0~ROWS4) output valid drive level row by row; read level on columns, and find
the pressed button. Following is related code:

u32 pressed matrix[ARRAY SIZE (drive pins)] = {0};

kb scan row (0, gpio);
for (int i=0; i<=ARRAY SIZE(drive pins); i++) {

u32 r = kb scan row (i < ARRAY SIZE(drive pins) ? 1 : O,
gpio);

if (1) |

pressed matrix[i - 1] = r;

AN-19112700-E1 156 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The following methods are used to optimize code execution time for row-by-row
scan.

< When a row outputs drive level, it's not needed to read level of all columns
(CoL0~CoL5). Since the scan_pin_need marks valid column number, user can read
the marked columns only.

< After a row outputs drive level, a 20us or so delay is needed to read stabilized level
of scan pins, and a buffer processing is used to utilize the waiting duration.
The array variable “u32 pressed_matrix[5]” (up to 32 columns are supported) is used
to store final matrix keyboard state: pressed_matrix[0] bitO~bit5 mark button state on
CoL0~CoL5 crossed with RowO...... pressed_matrix[3] bitO~bit5 mark button state on
CoL0~CoL5 crossed with Row3.

3) Debounce filtering for pressed_matrix[]

unsigned int key debounce filter(u32 mtrx cur[], u32 filt en);

u32 key changed = key debounce filter(pressed matrix, \

(numlock status & KB NUMLOCK STATUS POWERON) 2 0 : 1);

During fast keyscan after wakeup from deepsleep, “numlock_status” equals
“‘KB_NUMLOCK_STATUS_POWERON?”, the “filt_en” is set as 0 to skip filtering and
fast obtain key values. In other cases, the “filt_en” is set as 1 to enable filtering. Only
when pressed_matrix[] stays the same during two adjacent key scans, but different
from the latest valid pressed_matrix[], the “key_changed” is set as 1 to indicate valid
update in matrix keyboard.

4) Buffer processing for pressed_matrix[]
Push pressed_matrix[] into buffer. When the “read_key” in “kb_scan_key (int
numlock status, int read_key)” is set as 1, the data in the buffer will be read
out immediately. When the “read_key” is set as 0, the buffer stores the data without
notification to the upper layer; the buffered data won’t be read until the read_key is 1.
In current SDK, the “read_key” is fixed as 1, i.e. the buffer does not take effect
actually.

5) According to pressed_matrix[], look up the KB_MAP_NORMAL table and return key
values.
Corresponding functions are “kb_remap_key_code” and “kb_remap_key_row”.

7.4.2 Keyscan Flow Timing Optimization

As introduced above, even if no button is pressed, each mainloop takes about 100us to
execute initial full scan through the whole matrix at least.

GPIO IRQ status bit inquiry can be used to optimize the time for full scan with no button
pressed.

As shown in PM section, in “user_init” all drive GPIO pins are configured as high-level
CORE wakeup for suspend.

u32 pin[] = KB DRIVE PINS;

AN-19112700-E1 157 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

for (int i=0; i<(sizeof (pin)/sizeof (*pin)); 1i++)
{

gpio set wakeup(pin[i],1,1); /[drive pin core(gpio) high
wakeup suspend

}

The “gpio_set_wakeup(pinli],1,1)” sets wakeup polarity of drive pins as high level and
enables wakeup.

Since GPIO interrupt enabling and polarity adopts the same configuration registers as
wakeup, the “gpio_set_wakeup(pinli],1,1)” will also enable GPIO interrupt and set
interrupt polarity as high level.

High level on GPIO will set GPIO IRQ service flag bit (core_648 BIT(18)); this flag bit can
be used to check whether any button is pressed (when a button is pressed, 10/11 VCC
high level will be read on corresponding drive pin).

#define reg irq mask REG_ADDR32 (0x640)
#define reg irg src REG_ADDR32 (0x648)
FLD IRQ GPIO EN = BIT(18),

As long as GPIO interrupt mask bit (core_640 BIT(18)) is not enabled, the configuration
will only set the IRQ flag bit, but won’t trigger interrupt.

The “KEYSCAN_IRQ_TRIGGER_MODE?” definition in app_config.h serves to enable
time optimization for the keyscan flow.

#define KEYSCAN IRQ TRIGGER MODE 1
Initialization:
gpio _core irg enable all(l);

reg irqg src = FLD IRQ GPIO EN;

AN-19112700-E1 158 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

static inline u32 kb scan key (int numlock status, int read key) {
ul gpio[8]1:

#if (KEYSCAN TRQ TRIGGER MODE)
static ug key not released = 0;
if (numlock status & KB NUMLOCE STATUS POWERON) {
key not released = 1;
}

if(reg irg src & FLD IRQ GPIQ EN}y{ //FLD IR{Q GPIO RISC2Z EN
key not released = 1;
reg irg src = FLD IRQJ GFIO EN; //FLD IRQ GPIO RISCZ EN
}
else{ /[/no key press

if (!key not released && ! (numlock status & KE NUMLOCE STATUS FOWERON)) {
return 0;
}
}
fendif

scan_pin need = kb _key pressed (gpio):
if(scan pin need) {
return kb scan key walue (numlock status,read kev,gpio):
H
else{
#if (KB _REPEAT KEY ENABLE)
repeat key.key change flg = KEY NONE:
fendif
#1if (KEYSCAN TRQ TRIGGER MODE)
key not_released = 0;
#endif
retorn 0;
H

Figure 7-3 Keyscan Time Optimization

As shown above, it will first check whether IRQ flag bit is set after previous keyscan is
finished. If yes, it indicates there’s button press action during this duration; since manual
button press lasts for 200ms at least, the pressed button is not released yet, and the
subsequent basic keyscan flow (including full scan and row-by-row scan) will be
executed.

After the pressed button is released, the debounce function in kb_key pressed takes
effect. Only when six successive detections all show button release state, the keyscan
flow will be stopped.

7.5 Deepsleep Wakeup Fast Keyscan

After Slave enters deepsleep during connection state, it can be woke up by button press
action. After wakeup, firmware is rebooted; in mainloop following user_init, Slave will first
send adv packets, establishes connection, and then sends the key value to BLE Master.

Though 5316 BLE SDK adopts some processing to speed up the deepback (resumption
after wakeup from deepsleep), the duration may still reach several hundreds of
milliseconds (e.g. 300ms). To avoid action loss of the wakeup pin, fast keyscan and data
buffer are added. Fast keyscan is designed to avoid potential button action loss caused
by re-initialization time after MCU reboots and debounce filter processing time during

AN-19112700-E1 159 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

keyscan in mainloop. Data buffer is designed considering valid button data detected in
adv state and pushed into BLE TX FIFO will be cleared after entering connection state.

The macro “DEEPBACK_FAST_KEYSCAN_ENABLE” in app_config.h is used to control
fast keyscan and data buffer.

#define DEEPBACK FAST KEYSCAN ENABLE 1

void deep wakeup proc (void)
{
#if(DEEPBACK_FAST_KEYSCAN_ENABLE)
if (analog_read(DEEP_ANA REGO) == CONN_DEEP FLG) {
if (kb_scan_ key (KB NUMLOCK_ STATUS POWERON,1l) && kb event.cnt) {
deepback key state = DEEPBACK KEY CACHE;
key not released = 1;

memcpy (&kb_event cache, &kb event, sizeof (kb _event));

}
#endif
}

In initialization key scan is processed before user_init. After it's detected by reading
retention analog register that MCU enters deep wakeup from connection state, the
“kb_scan_key” is invoked to directly obtain the whole matrix button state without enabling
the debounce filtering. If key scan process shows a button is pressed (button state
update is returned, and kb_event.cnt in non-zero value), the “kb_event” variable will be
copied to the cache variable “kb_event_cache”.

The “deepback_pre_proc” and “deepback_post_proc” processing are added in keyscan
during mainloop.

void proc_keyboard (u8 e, u8 *p)
{
kb event.keycode[0] = 0;

int det key = kb scan key (0, 1);
#if(DEEPBACK_FAST_KEYSCAN_ENABLE)
if (deepback key state != DEEPBACK KEY IDLE) {
deepback pre proc(&det key);

#endif

if (det key) {

key change proc();

AN-19112700-E1 160 Ver.1.0.0

/TELIN

SSEMICONDUCIOR) Telink TLSR8232 BLE SDK Developer Handbook

}

#if (DEEPBACK FAST KEYSCAN ENABLE)
if (deepback key state != DEEPBACK KEY IDLE) {
deepback post proc();
}
#endif
}

The “deepback_pre_proc” realizes buffer processing of fast keyscan value, as shown
below: After connection is established between Slave and Master, if no button state
update is detected in a kb_key_scan, the buffered kb_event_cache value will be used as
the current newest button state update.

For button release processing, it's needed to check current matrix keyboard state: If
there’s button pressed, since actual button release generates a release action, it's not
needed to add manual release; if current button is released, it's needed to mark that a
manual release event should be added, otherwise button may fail to be released since
buffered button press event stays valid.

The “deepback_pre_proc” specifies whether manual release is needed. The
“deepback_post_proc” will determine whether to push a button release event into BLE TX
FIFO accordingly.

7.6 Repeat Key Processing

When a button is pressed and held, it's needed to enable repeat key function to
repeatedly send the key value with a specific interval.

The “repeat key” function is masked by default. By configuring related macros in
app_config.h, this function can be controlled correspondingly.

/lrepeat key

#define KB REPEAT KEY ENABLE 0
#defineKB REPEAT KEY INTERVAL MS 200
#define KB REPEAT KEY NUM 1
#define KB MAP REPEAT (VK 1, }

1) KB_REPEAT_KEY_ENABLE
This macro serves to enable or mask the repeat key function. To use this function,
first set “KB_REPEAT_KEY_ENABLE” as 1.

2) KB_REPEAT_KEY_INTERVAL_MS
This macro serves to set the repeat interval time. For example, if it's set as 200ms, it
indicates when a button is held, kb_key scan will return an update with the interval
of 200ms. Current button state will be available in kb_event.

3) KB_REPEAT_KEY_NUM and KB_MAP_REPEAT

AN-19112700-E1 161 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The two macros serve to define current repeat key values: KB_REPEAT_KEY_NUM
specifies the number of keycodes, while the KB_MAP_REPEAT defines a map to
specify all repeat keycodes. Note that the keycodes in the KB_MAP_REPEAT must
be the values in the KB_MAP_NORMAL.

Following example shows a 6*6 matrix keyboard: by configuring the four macros, eight
buttons including UP, DOWN, LEFT, RIGHT, V+, V-, CHN+ and CHN- are set as repeat
keys with repeat interval of 100ms, while other buttons are set as non-repeat keys.

#define KB MAP NORMAL D\

i {VK_POWER, VK_LOW BATT, VK IV _PLUS, VK_TV_MINUS, VE_IN_GUTFUT, VK VOL UP,}, \
{VK_VOICE_SERRCH, VK_PROGRAEM, VK_RETURN, VEK_HOME, VE_MENU, VE_EXIT, 1}, \
{VE_UP, VK_CH_UP, VE_W_MUTE, VE_LEFT, VK_CONFIRM, VK RIGHT, }, \
{VK_VOL_DN, VE_DOWN, VE_CH_DN, VK_FAST BACKWARD, VK PLAY PAUSE,VE 1, o %
{VE_2, VE_3, VE_4, VE_S, VE_8, VE_7, 3, M
{VE_9, VKPAD ASTERIX,VE O, VE_NUMEER, VK_W_SRCH, VE 8,3, ¥

#define KB REPEAT KEY ENABLE 1

#define KB_REPEAT KEY INTERVAL MS 100

i#define KB REPEAT KEY NUM 8

#define KB MAP REPEAT { VK _UE, VK_DOWN, VK_LEFT, VK_RIGHT, \

VK_VOL UP, VK VOL DN, VK CH UP, VK CH DN, }

Users can search for the four macros in the project to locate the code about repeat key.

7.7 Stuck Key Processing

Stuck key processing is used to save power when one or multiple buttons of a remote
control/keyboard is/are pressed and held for a long time unexpectedly, for example a RC
is pressed by a cup or ashtray. If keyscan detects some button is pressed and held,
without the stuck key processing, MCU won’t enter deepsleep or other low power state
since it always considers the button is not released.

Two related macros in app_config.h are:
[Istuck key
#define STUCK KEY PROCESS ENABLE 0
#define STUCK KEY ENTERDEEP TIME 60//in s

By default the stuck key processing function is masked. User can set the
“‘STUCK_KEY_PROCESS_ENABLE” as 1 to enable this function. The
“‘STUCK_KEY_ENTERDEEP_TIME” serves to set the stuck key time: if it's set as 60s, it
indicates when button state stays fixed for more than 60s with some button held, it's
considered as stuck key, and MCU will enter deepsleep.

Users can search for the macro “STUCK_KEY_PROCESS_ENABLE” to locate related
code in keyboard.c, as shown below:

#if (STUCK KEY PROCESS ENABLE)
u8 stuckKeyPress[ARRAY SIZE (drive pins)];
#endif

An u8-type array stuckKeyPress[5] is defined to record row(s) with stuck key in current
key matrix. The array value is obtained in the function “key_debounce_filter”.

Upper-layer processing is shown as below:

kb _event.keycode[0] = 0;

AN-19112700-E1 162 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

int det key = kb scan key (0, 1);

if (det key) {
#if (STUCK_KEY PROCESS ENABLE)
if (kb _event.cnt){ //key press
stuckKey keyPressTime = clock time();
}
#endif

For each button state update, when button press is detected (i.e. kb_event.cnt is non-

zero value), the “stuckKey_keyPressTime” is used to record the time for the latest button
press state.

Processing in blt_pm_proc is shown as below:
#if (STUCK KEY PROCESS ENABLE)

if (key not released &&
clock time exceed(stuckKey keyPressTime,
STUCK KEY ENTERDEEP TIME*1000000)) {

u32 pin[] = KB DRIVE PINS;
for (int i=0; i<(sizeof (pin)/sizeof (*pin)); i++)
{

extern u8 stuckKeyPress|[];

if (stuckKeyPress[i]) {

cpu_set gpio wakeup (pin[i],0,1); //reverse stuck
key pad wakeup level

}

cpu_sleep wakeup(l, PM WAKEUP PAD, 0); [l/deepsleep
}
#endif

Check whether the latest pressed button is held for more than 60s: if yes, it's considered
as stuck key, all row numbers with stuck key will be obtained via the bottom-layer
“stuckKeyPress|[]”; then modify corresponding PAD wakeup polarity as low level from
high level, so that MCU can enter deepsleep and wake up by button release normally

(when button is pressed, corresponding drive pin reads high level of 10/11 VCC; after
release, the drive pin turns to low level).

AN-19112700-E1 163 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

7.8 Power Optimization for Long Key Press

Power optimization can be enabled for long pressed keys, by enabling the macro
‘LONG_PRESS KEY_POWER_OPTIMIZE”. Please refer to the PM section for details.

AN-19112700-E1 164 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

8. LED Management

8.1 LED Task Related Functions

Source code about LED management is available in vendor/common/blt_led.c of 5316
BLE SDK for user reference. Users can directly include the “vendor/common/blt_led.h”
into their C files.

The following three functions need to be called:
void device_led init(u32 gpio,u8 polarity);
int device_led setup(led cfg t led cfgq);
static inline void device_ led process (void);

In initialization, the “device_led_init(u32 gpio, u8 polarity)” is used to set current GPIO
and polarity corresponding to LED. If “polarity” is set as 1, it indicates LED will be turned
on when GPIO outputs high level; if “polarity” is set as 0, it indicates LED will be turned
on when GPIO outputs low level.

The “device_led_process” function is added in Ul Entry of mainloop. It's used to check
whether LED task is not finished (DEVICE_LED_BUSY). If yes, MCU will carry out
corresponding LED task operation.

8.2 LED Task Configuration and Management
8.2.1 LED Event Definition

The following structure is used to define a LED event.
typedef struct{
unsigned short onTime ms;
unsigned short offTime ms;

unsigned char repeatCount; //Oxff special for long
on(offTime_ms=0)/long off(onTime_ms=0)

unsigned char priority; //Ox00 <0x01 < 0x02 < 0x04 < 0x08 <
0x10 < 0x20 < 0x40 < 0x80

} led cfg t;

The unsigned short int type “onTime_ms” and “offTime_ms” specify light on and off time
(unit: ms) for current LED event, respectively. The two variables can reach the maximum
value of 65535.

The unsigned char type “repeatCount” specifies blinking times (i.e. repeat times for light
on and off action specified by the “onTime_ms” and “offTime_ms”). The variable can
reach the maximum value of 255.

The “priority” specifies the priority level for current LED event.

To define a LED event when the LED light stays on/off, set the “repeatCount” as
255(0xff), set “onTime_ms”/“offTime_ms” as 0 or non-zero correspondingly.

LED event examples:

AN-19112700-E1 165 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

1) Blink for 3s with the frequency of 1Hz: turn on for 500ms, turn off for 500ms, and
repeat for 3 times.

led_cfg_tled eventl = {500, 500, 3, Ox00, }

2) Blink for 50s with the frequency of 4Hz: turn on for 125ms, turn off for 125ms, and
repeat for 200 times.

led cfg t led event2 = {125, 125, 200, 0x00, }

3) Always on: onTime_ms is hon-zero, offTime_ms is zero, and repeatCount is Oxff.
led cfg t led event3 ={100, 0, 0xff, 0x00, };

4) Always off: onTime_ms is zero, offTime_ms is non-zero, and repeatCount is Oxff.
led cfg_t led event4 = {0, 100, Oxff, 0x00, };

5) Turn on for 3s, and then turn off: onTime_ms is 1000, offTime_ms is 0, and
repeatCount is 0x3.

led cfg t led event5 = {1000, O, 3, 0x00, };

The “device_led_setup” can be invoked to deliver a led_event to LED task management.

device_led setup(led_eventl);

8.2.2 LED Event Priority

Users can define multiple LED events in SDK, however, only a LED event is allowed to
be executed at the same time. No task list is set for the simple LED management: When
LED is idle, LED will accept any LED event delivered by invoking the “device_led_setup”.
When LED is busy with a LED event (old LED event), if another event (new LED event)
comes, MCU will compare priority level of the two LED events; if the new LED event has
higher priority level, the old LED event will be discarded and MCU starts to execute the
new LED event; if the new LED event has the same or lower priority level, MCU
continues executing the old LED event, while the new LED event will be completely
discarded, rather than buffered.

By defining LED events with different priority levels, user can realize corresponding LED
indicating effect.

Since inquiry scheme is used for LED management, MCU should not enter long suspend
(e.g. 10ms * 50 = 500ms) with latency enabled and LED task ongoing
(DEVICE_LED_BUSY); otherwise LED event with small onTime_ms value (e.g. 250ms)
won’t be responded in time, thus LED blinking effect will be influenced.

#define DEVICE_LED BUSY (device_led.repeatCount)
The corresponding processing needs to be added in blt_pm_proc, as shown below:
user_task_flg = scan_pin_need || key_not_released || DEVICE_LED_BUSY;
if(user_task_flg){

bls_pm_setManualLatency(0); //Manually disable latency

AN-19112700-E1 166 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

}

Users can refer to the code in current 5316 ble remote project for LED related
processing.

AN-19112700-E1 167 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

9. blt Software Timer

Telink BLE SDK supplies source code of blt software timer demo for user reference on
timer task. Users can directly use this timer or modify it as needed.

Source code is available in “vendor/common/blt_soft_timer.c” and “blt_soft_timer.h”. To
use this timer, the macro below should be set as 1.

#define BLT SOFTWARE TIMER ENABLE 0 /lenable or disable

Since blt software timer is inquiry timer based on system tick, it cannot reach the
accuracy of hardware timer, and it should be continuously inquired during mainloop. The
blt soft timer applies to the use case with timing value more than 5ms and without high
requirement for time error.

Its key feature is: This timer will be inquired during mainloop, and it ensures MCU can
wake up in time from suspend and execute timer task. This design is implemented based
on “Timer wakeup of APP layer” (section 4.8).

Current design can run up to four timers, and maximum timer number is modifiable via
the macro below:

#define MAX TIMER NUM 4 [ftimer max number

9.1 Timer Initialization

Call the API below to initialize blt software timer:
void blt_soft_timer init(void);

Timer initialization only registers “blt_soft_timer_process” as callback function of APP
layer wakeup in advance.

void blt_soft_timer init (void)
{

bls pm registerAppWakeupLowPowerCb (blt soft timer process);

9.2 Timer Inquiry Processing

The function “blt_soft_timer_process” is used to implement inquiry processing of blt
software timer.

void blt _soft timer process (int type);

On one hand, mainloop should always invoke this function in the location as shown in the
figure below. On the other hand, this function must be registered as callback function of
APP layer wakeup in advance. Whenever MCU is woken up from suspend in advance by
timer, this function will be quickly executed to process timer task.

AN-19112700-E1 168 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

wvold mai;_;uup (void)

[T - I = =]

i
static w32 tick loop;
E tick loop ++;
: blt soft timer process (MATNLOOF ENTEY)
; blt =dk main loop(}:
T}

The parameter “type” of the “blt_soft_timer_process” indicates two cases to enter this
function: If “type” is 0, it indicates entering this function via inquiry in mainloop; if “type” is
1, it indicates entering this function when MCU is woke up in advance by timer.

#define MAINLOOP ENTRY 0

#define CALLBACK_ENTRY 1

The implementation of “blt_soft_timer_process” is rather complex, and its basic principle
is shown as below:

1) First check whether there is still user-defined timer in current timer table.If not,
directly exit the function and disable timing wakeup of APP layer; if there’s timer task,
continue the flow.

if (!blt timer.currentNum) {
bls pm setAppWakeupLowPower (0, 0); //disable

return;

}

2) Check whether the nearest timer task reaches: if the task reaches, exit the function;
otherwise continue the flow. Since the design will ensure all timers are time-ordered,
only the nearest timer needs to be checked.

if(!blt is timer expired(blt timer.timer[0].t, now)) {

return;

}

3) Inquire all current timer tasks, and execute corresponding task as long as timer
value reaches.

AN-19112700-E1 169 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
for({int i=0; i<blt timer.currentNum; i++){
if(blt is timer expired(blt_ timer.timer[i].t ,now) }{ //timer trigger
if (blt timer.timer[i].cb == NULL){

write reg32 (0x8000, 0Ox11111122); while(l); //debug ERR
}
elsel

result = blt timer.timer[i].cb(}:

if(result < 0){
blt soft timer delete by index(i):
}
else if (resulc = 0){
change flg = 1;
blt timer.timer[i].t = now + blt timer.timer[i].interwval;
}

else{ [/ set new timer interval
change flg = 1;
blt timer.timer[i].interval = result * CLOCK S¥5 CLOCK 1U5;

blt _timer.timer[i].t = now + blt_timer.timer[i].interval;

The code above shows processing of timer task function: If the return value of this
function is less than 0, this timer task will be deleted and won’t be responded; if the
return value is 0, the previous timing value will be retained; if the return value is more
than 0, this return value will be used as the new timing cycle (unit: us).

4) In step 3), if tasks in timer task table change, the previous time sequence may be
disturbed, and re-ordering is needed.
if (change flg) {

blt soft timer sort();

5) If the nearest timer task will be responded within 3s (it can be modified as a value
larger than 3s as needed) from now, the response time will be set as wakeup time of
APP layer in advance; otherwise APP layer wakeup in advance will be disabled.

if((u32) (blt _timer.timer[0].t - now) < 3000 *
CLOCK_SYS_CLOCK_.ZMS) {

bls pm setAppWakeupLowPower (blt timer.timer[0].t, 1);

else/{

bls pm setAppWakeupLowPower (0, 0); //disable

AN-19112700-E1 170 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

9.3 Add Timer Task

The API below is used to add timer task.

typedef int (*blt timer callback t) (void);

int blt_soft_timer add(blt timer callback t func, u32
interval us);

“func”; timer task function;“interval_us”: timing value (unit: us). The int-type return value
corresponds to three processing methods:

1) If the return value is less than 0, this executed task will be automatically deleted.

2) If the return value is 0, the old interval_us will be used as timing cycle.

3) If the return value is more than 0, this return value will be used as the new timing
cycle (unit; us).

:int blt soft timer add(kblt timer callback t func, u32 interval usg)
it

int i:

u32 now = clock time();

if (blt timer.currentNum >= MAX TIMER NUM){ //timer full
L return 0;

}

else{
blt timer.timer[blt timer.currentNum].ck = func;
blt timer.timer[blt_timer.currentNum].interval = interval us * CLOCK S¥S CLOCK 1US

blt timer.timer[blt timer.currentNum].t = now + blt timer.timer[blt timer.currentl
blt timer.currentNum ++;

3 blt soft timer sort():
] retorn 1;

L }
)

As shown in the implementation code, if timer number exceeds the maximum value, the
adding operation will fail. Whenever a new timer task is added, re-ordering must be
implemented to ensure timer tasks are time-ordered, while the index corresponding to the
nearest timer task should be 0.

9.4 Delete Timer Task

As introduced above, timer task will be automatically deleted when the return value is
less than 0. Except for this case, the API below can be called to specify the timer task to
be deleted.

int blt_soft_timer delete(blt timer callback t func);

9.5 Demo

For Demo code of blt soft timer, please refer to “TEST _USER_BLT_SOFT_TIMER” in
5316 feature.

int gpio_test0 (void)
{

AN-19112700-E1 171 Ver.1.0.0

/TELIN
“EM'CO"D"CTOR& Telink TLSR8232 BLE SDK Developer Handbook

DBG_CHNO_TOGGLE; /lgpio 0O toggle to see the effect

return O;

int gpio_testl (void)
{
DBG_CHN1 TOGGLE; /lgpio 1 toggle to see the effect

static u8 flg = 0;
flg = !flg;
if (£19g) {
return 7000;
}
else{

return 17000;

int gpio_test2 (void)

{
DBG_CHN2_TOGGLE; /lgpio 2 toggle to see the effect
[ltimer last for 5 second
if (clock time exceed (0, 5000000)) {

/lreturn -1;

blt_soft_timer_delete(&gpio_test2);

return O;

int gpio_test3 (void)

{
/lgpio 3 toggle to see the effect
DBG_CHN3_TOGGLE;

return 0;

AN-19112700-E1 172 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

}

Initialization:
blt_soft_timer_init();
blt_soft_timer_add(&gpio_test0, 23000);
blt_soft_timer_add(&gpio_test1, 7000);
blt_soft_timer_add(&gpio_test2, 13000);
blt_soft_timer_add(&gpio_test3, 27000);

Four tasks are defined with differenet features:

1) Toggle gpio_testO once every 23ms.

2) gpio_testl uses 7ms/17ms toggle timer.

3) Delete gpio_test2 after 5s, which can be implemented by invoking
“blt_soft_timer_delete(&gpio_test2)” or “return -1”.

4) Toggle gpio_test3 once every 27ms.

AN-19112700-E1 173 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

10. IR

10.1 PWM Driver

Please refer to PWM section in TLSR8232 datasheet to better understand PWM driver.

PWM related hardware configurations are very simple and are basically implemented by
operating registers. APIs are all defined in “pwm.h” (c files not needed) and are
implemented by using “static inline function”, which improves efficiency and saves code
size.

10.1.1 PWM id and Pin

TLSR8232 supports up to 12-channel PWM: PWMO ~ PWM5 and PWMO_N ~ PWM5_N.
Six-channel PWM is defined in driver:

typedef enum {
PWMO_ID = O,
PWM1_ ID,
PWM2_ID,
PWM3_ID,
PWM4_ID,
PWM5 ID,

}pwm id;

Only six-channel PWMO~PWMS5 are configured in software, while the other six-channel
PWMO_N~PWM5_N is inverted output of PWMO~PWM5 waveform. For example:
PWMO _N is inverted output of PWMO waveform. When PWMO is high level, PWMO_N is
low level; When PWMO is low level, PWMO _N is high level. Therefore, as long as
PWMO~PWMS5 are configured, PWMO_N~PWMS5_N are configured.

IC pins of the 12-channel PWM are shown as below:

PWMx Pin PWMx_n Pin
PWMO PAO/PB3 PWMO_N PB6/PC2
PWM1 PB1/PB7 PWM1_N PA2/PB4
PWM2 PA4/PB2 PWM2_N PC1
PWM3 PBO/PC7 PWM3_N PA1
PWM4 PA3/PB5/PC6 PWM4_N PA6
PWM5 PAS5/PA7 PWM5_N PC3

AN-19112700-E1 174 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

Use “void gpio_set_func(GPIO_PinTypeDef pin, GPIO_FuncTypeDef func)” to set PWM
function of pins.

Pin: actual output pins of PWM waveform. func must select from AS_PWMO ~
AS_PWMS5_N in the definition of GPIO_FuncTypeDef according to actual PWM functions
of GPIOs in the table above.

typedef enum({

AS PWMO = 20,
AS_PWM1 = 21,
AS PWM2 = 22,
AS PWM3 = 23,
AS PWM4 = 24,
AS PWM5 = 25,

AS PWMO N = 26,

AS PWMI N = 27,
AS PWM2 N = 28,
AS PWM3 N = 29,
AS PWM4 N = 30,

AS PWM5 N = 31,

}GPIO FuncTypeDef;

For example, use PAO as PWMO:
gpio_set_func(GPIO_PAO, AS_PWMO0)

10.1.2 PWM Clock

The “pwm_set_clk(int system_clock _hz, int pwm_clk)” is used to set PWM clock.

< ‘“system_clock _hz": current system clock CLOCK_SYS CLOCK_HZ. (The marco is
defined in app_config.h.)

< “pwm_clk”: PWM clock to be configured. “system_clock hz” must be an integral
multiple of “pwm_clk” so as to get the right PWM clock via frequency division.

To increase accuracy of PWM waveform, PWM clock must be as large as possible but
smaller than system clock. It's recommended to set “pwm_clk” as
“CLOCK_SYS_CLOCK_HZ”:

pwm_set_clk(CLOCK_SYS_CLOCK_HZ, CLOCK_SYS_CLOCK_HZ);

Suppose the current system clock CLOCK_SYS_CLOCK_HZ is 16000000, the PWM
clock set above equals to the system clock, as 16M.

If PWM clock needs to be 8M, set as below. No matter how the system clock changes
(CLOCK_SYS_CLOCK_HZ is 16000000, 32000000 or 48000000), PWM clock will be
8M.

pwm_set_clk(CLOCK_SYS_CLOCK_HZ, 8000000);

AN-19112700-E1 175 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

10.1.3 PWM Cycle and Duty

PWM waveform consists of PWM Signal Frames. For a PWM Signal Frame, “cycle” and
“‘cmp” need to be configured via related APIs.

void pwm_set cycle(pwm id id, unsigned short cycle tick)
This APl is used to set PWM cycle, the unit is the number of PWM clocks.
void pwm_set cmp (pwm id id, unsigned short cmp tick)

This APl is used to set PWM cmp, the unit is the number of PWM clocks.

The API below combines the two APIs into one, which improves the configuration
efficiency.

void pwm_set cycle and duty(pwm id id, unsigned short cycle tick,
unsigned short cmp tick)
PWM duty of a PWM signal frame is calculated as below:
PWM duty = PWM cmp/PWM cycle

The figure below shows the result of pwm_set_cycle_and_duty(PWMO_ID, 5, 2). The
cycle of a Signal Frame is five PWM clocks, 2 PWM clocks in high level, PWM duty is

40%.
PWM
clock |
Baana ;
P +CH‘1 R .
waveform_ b i |

Signal Frame Signal Frame

Figure 10-1 PWM Cycle & Duty

For PWMO ~ PWMS5, by default hardware will set PWM output high level followed by low
level during a frame cycle. To obtain PWM waveform with low level followed by high
level, use the following two methods:

1) Use corresponding PWMO_N ~ PWM5_N (inverted output of PWMO ~ PWM5).
2) UseAPI| “static inline void pwm_revert (pwm id id)”to invert PWMO ~
PWMS5 waveform.

Suppose current PWM clock is 16MHz, to set PWM cycle to 1ms and duty cycle for
PWMO to 50%:

pwm_set_cycle(PWMO_ID , 16000)
pwm_set_cmp (PWMO_ID , 8000)
or

pwm_set cycle_and_duty(PWMO_ID, 16000, 8000);

AN-19112700-E1 176 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

10.1.4 PWM Revert

“static inline void pwm_revert(pwm_id id)” is used to invert PWMO0 ~ PWM5 waveform.

“static inline pwm_n_revert(pwm_id id)” is used to invert PWMO_N ~ PWM5_N waveform.

10.1.5 PWM Start and Stop
Use the two interfaces below to enable (start)/disable (stop) certain PWM.
void pwm_start(pwm_id id) ;

void pwm_stop(pwm_id id) ;

10.1.6 PWM Mode

PWM supports five modes: Normal mode(also Continuous mode), Counting mode, IR
mode, IR FIFO mode and IR DMA FIFO mode.

typedef enum{

PWM_NORMAL MODE = 0x00,
PWM_COUNT MODE = 0x01,
PWM IR MODE = 0x03,

PWM IR FIFO MODE = 0x07,
PWM IR DMA FIFO MODE = OxOF,

}pwm_mode;

The API to set PWM mode is:
void pwm_set mode (pwm id id, pwm mode mode)

PWMO supports all five modes, Normal mode, Counting mode, IR mode, IR FIFO mode
and IR DMA FIFO mod, while PWM1 ~ PWMS5 only support normal mode. In other words,
PWMO supports other four special modes besides normal mode.

Please section 8.5 in TLSR8232 datasheet for details of PWM modes.

10.1.7 PWM Pulse Number

void pwm set pulse num(pwm id id, unsigned short pulse num) iS used to
set the number of Signal Frames of specified PWM waveforms. Here “pulse” means
Signal Frames.

For normal mode (Continuous mode), there is no limit to the number of Signal Frames,
therefore this APl is meaningless to normal mode. This APl is only useful to other four
special modes.

AN-19112700-E1 177 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

10.1.8 PWM Phase

void pwm_set phase (pwm id id, unsigned short phase)is used to set delay
time before PWM is started. “phase” is the delay time, the unit is the number of PWM
clocks. Generally it can be set as 0 (no delay).

10.1.9 PWM Interrupt

Some basic concepts about Telink MCU interrupt are introduced here.

Interrupt “status” is state flag bit generated by hardware interrupt request of certain IRQ
source, and it does not depend on software setting. No matter whether “mask” is
enabled, interrupt request will always set corresponding IRQ “status” to 1. Generally,
“status” can be cleared to 0 by writing it with “1”.

Interrupt response: When CPU receives an interrupt request (IRQ) from certain IRQ
source, it will determine whether to respond to the IRQ. If yes, firmware pointer PC will
jump to interrupt handling part “irg_handler”.

To enable interrupt response, please make sure all “mask” bits corresponding to current
IRQ are enabled. One IRQ may correspond to multiple “mask” bits which are the relation
of logic “And”. IRQ request won’t trigger interrupt response unless all of its related “mask”
bits are enabled.

PWM driver in the “register.h” only involves the following IRQ sources.

#define reg pwm irqg mask REG_ADDRS (0x7b0)
#define reg pwm irq sta REG_ADDRS (0x7b1)
enum {
FLD IRQ PWMO PNUM = BIT (0),
FLD IRQ PWMO IR DMA FIFO DONE = BIT(1),
FLD TRQ PWMO FRAME = BIT (2),
FLD TRQ PWMI1 FRAME = BIT (3),
FLD IRQ PWM2 FRAME = BIT (4),
FLD TRQ PWM3 FRAME = BIT (5),
FLD IRQ PWM4 FRAME = BIT (6),
FLD IRQ PWM5 FRAME = BIT (7),

}i
The eight IRQ sources listed in the enum correspond to core_7b0 BIT<0:7> (“mask”) /
core_7b1 BIT<0:7> (“status”).

In the figure below, PWMO works in IR mode, duty cycle of Signal Frame is 50%, pulse
number (i.e. Signal Frame number) for each IR task is 3. This figure will help to illustrate
the three types for PWM IRQ “status”.

AN-19112700-E1 178 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

IR task
(pulse number = 3)

IR task
(pulse number = 3)

Signal Frame Signal Frame Signal Frame Signal Frame Signal Frame Signal Frame

- .
I N

IRQ_PWMO_FRAME IRQ_PWMO_FRAME

IRQ_PWMO_PNUM IRQ_PWMO_PNUM

Figure 10-2 PWM interrupt

1) IRQ_PWMn_FRAME(n=0,1,2,3,4,5) for PWMO~PWMS5: After each signal frame,
PWM#n (n=0~5) will generate a frame-done IRQ (Interrupt Request) signal
“IRQ_PWMn_FRAME”.

As shown in the figure above, six frame-done IRQ signal are generated at the end of
each PWMO Signal Frame.

2) IRQ_PWMO_PNUM: In Counting mode and IR mode, PWMO will generate a Pnum
IRQ signal “IRQ_PWMO0_PNUM” after completing a group of Signal Frames (pulse
number is determined by the APl pwm_set_pulse_num).

As shown in the figure above, PWMO will generate a Pnum IRQ signal at the end of
a pulse group containing three Signal Frames.

3) IRQ_PWMO_IR_DMA_FIFO_DONE
In IR DMA FIFO mode, PWMO will generate an IR waveform send done IRQ signal
“IRQ_PWMO_IR_DMA_FIFO_DONE”, after all PWM waveforms configured in DMA
are sent.

As described above, IRQ request won't trigger interrupt response unless all of its related
“mask” bits are enabled. Taking “FLD _IRQ_PWMO0_PNUM” for an example, three “mask”
bits need to be enabled.

1) Enable “mask” of FLD_IRQ_PWMO0_PNUM, i.e. core_7b0:
reg_pwm_irg_mask |= FLD_IRQ_PWMO0_PNUM;
Generally, to avoid false triggering of interrupt response, previous “status” needs to
cleared before enabling “mask”.
reg_pwm_irg_sta = FLD_IRQ_PWMO0_PNUM,;
2) Enable PWM “mask” in MCU system interrupt, i.e. core_640 BIT<14>.

#define reg irg mask REG_ADDR32 (0x640)
enum {

FLD IRQ SW PWM EN = BIT(14), //irqg software | irg pwm

AN-19112700-E1 179 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

}

The method to enable this “mask”:
Reg_irg_mask |= FLD_IRQ_SW_PWM_EN;
3) Enable MCU global interrupt “mask”, i.e. irq_enable().

10.1.10 API for IR DMA FIFO Mode

This section introduces the APIs dedicated for IR DMA FIFO mode. Please refer to PWM
demo code in the SDK.

4 bytes 2 bytes 2 bytes 2 bytes
DMA length waveform | waveform | — waveform
1 2 n
FIFO 1 FIFO 2 FIFO n

DMA FIFO buffer

Figure 10-3 DMA FIFO Buffer for IR DMA FIFO Mode

DMA FIFO buffer is a data block defined in SRAM, and the “DMA length” of the first 4
bytes indicates the number of bytes occupied by FIFO. As shown above, DMA length =
n*2.

There are n FIFOs, and each FIFO has two bytes to indicate one PWM waveform. For
TLSR8232, “n” can be up to 256.

After DMA data buffer takes effect, PWM HW module will send out waveform 1 ~
waveform n successively.

After all waveforms are sent, PWM is stopped automatically and
IRQ_PWMO_IR_DMA_FIFO_DONE is triggered.

10.1.10.1 Configuration of DMA FIFO

Each DMA FIFO uses 2 bytes (16 bits) to configure one PWM waveform. When the API
below is called, 2-byte DMA FIFO data will be returned.

Unsigned short pwm config dma fifo waveform(int carrier en,

PwmOPulse SelectDef pulse, unsigned short pulse num);

By configuring the three parameters “carrier_en”, “pulse” and “pulse_num”, the PWM
output waveform contains “pulse_num” PWM pulses (Signal Frames).

As shown in the configuration format in the 8232 datasheet, BIT(15) specifies Signal
Frame format of PWM waveform, and corresponds to the “carrier_en” of this API.

< When “carrier_en” is 1, PWM will output carrier pulse.
< When “carrier_en” is 0, PWM will output Signal Frames with low level only.

AN-19112700-E1 180 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

The “pulse_num” specifies the number of Signal Frames for current PWM waveform.
The “pulse” supports two definitions below:
Typedef enum({
PWMO PULSE NORMAL = 0,

PWMO PULSE SHADOW

BIT (14),

}PwmOPulse SelectDef;
< When “pulse” is PWMO_PULSE_NORMAL, Signal Frame uses the configuration of
the APl “pwm_set_cycle_and_duty”.
< When “pulse” is PWMO_PULSE_SHADOW, Signal Frame uses the configuration of
PWM shadow mode.
PWM shadow mode enables more flexibility for PWM waveform configuration in IR

DMA FIFO mode. Related API is shown as below, and its configuration is consistent
with pwm_set cycle_and_duty.

Void pwm_set pwmO_ shadow_cycle and duty (unsigned short cycle tick,

unsigned short cmp tick);

10.1.10.2 Set DMA FIFO Buffer

After DMA FIFO buffer is configured, call the API below to set the starting address of the
buffer to DMA module.

Void pwm_set dma_ address(void * pdat);

10.1.10.3 Start and Stop of IR DMA FIFO Mode
After DMA FIFO buffer is prepared, call the API below to start sending PWM waveforms.
void pwm_start _dma ir sending (void);

After all PWM waveforms in DMA FIFO buffer are sent, the PWM module will be stopped
automatically. The API below can be called to manually stop the PWM module in
advance.

void pwm stop dma ir sending(void);

10.2 IR Demo

Please refer to the IR demo code in SDK demo “5316 ble_remote”. Set the macro
‘REMOTE_IR_ENABLE” in “app_config.h” to 1.

10.2.1 PWM Mode Selection

As required by IR transmission, PWM output needs to switch at specific time with small
error tolerance of switch time accuracy to avoid incorrect IR.

AN-19112700-E1 181 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

As described in Link Layer timing sequence (section 3.2.4), Link Layers uses system
interrupt to process brx event. (In the new SDK, adv event is processed in the main_loop
and does not occupy system interrupt time.) When IR is about to switch PWM output
soon, if brx event related interrupt comes first and occupies MCU time, the time to switch
PWM output may be delayed, thus to result in IR error.

Therefore IR cannot use PWM Normal mode.

For Telink 826x BLE SDK, PWM IR mode is used to implement IR. Please refer to “826x
BLE SDK handbook”.

Since 826x PWM IR mode only supports data pre-storage of two IR FIFOs, if PWM
Signal Frame takes very short time, even shorter than BLE interrupt handling time in
irg_handler, PWM waveform may be delayed, thus it brings a risk for IR mode.

5316 introduces an extra IR DMA FIFO mode which is not supported by 826x. In IR DMA
FIFO mode, since FIFO can be defined in SRAM, more FIFOs are available, which can
effectively solve the shortcoming of PWM IR mode above.

IR DMA FIFO mode supports pre-storage of multiple PWM waveforms into SRAM. Once
DMA is started, no software involvement is needed. This can save frequent SW
processing time, and avoid PWM waveform delay caused by simultaneous response to
multiple IRQs in interrupt system.

Only PWMO with IR DMA FIFO mode can be used to implement IR. Therefore, in HW
design, IR control GPIO must be PWMO pin or PWMO_n pin.

10.2.2 Demo IR protocol

The figure below shows demo IR protocol in SDK.

' [
: 110 &S : 110 nS i
[| '
Start Repeat Repeat
9ms 560uS 560uS 9ms
4. 5ms 560uS 1690uS
| . |
Logical : “qn 2250uS
Start : ‘o | Logical “1 : Repeat
Data
Red : Start
Data format: Address + Addrss + Command + Command Blue: Data

Green : Repeat

Figure 10-4 Demo IR protocol

10.2.3 IR Timing Design

The figure below shows basic IR timing abased demo IR protocol and feature of IR DMA
FIFO mode.

AN-19112700-E1 182 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

In IR DMA FIFO mode, a complete task is defined as FifoTask. Herein the processing of
IR repeat signal adopts the method of “add repeat one by one”, i.e. the macro below is

defined as 1.
#define ADD REPEAT ONE BY ONE 1
FifoTaskidatai FifoTask idle FifoTask_repeat FifoTask repeat
110 mS 110 mS 110 mS
<~— T _data—|~—— 110mS - T data ——
data repeat repeat repeat

IR start interrupt interrupt interrupt

IR dma fifo done IR dma fifo done IR dma fifo done IR dma fifo done

interrupt

Figure 10-5 IR Timing 1

When a button is pressed to trigger IR transmission, IR is disassembled to FifoTasks as
shown in Figure 10-5.

1)

2)

3)

4)

After IR is started, run FifoTask_data to send valid data. The duration of
FifoTask_data, marked as T_data, is not certain due to the uncertainty of data. After
FifoTask_data is finished, trigger IRQ_PWMO0_IR_DMA_FIFO_DONE.

In interrupt function of IRQ_PWMO_IR_DMA_FIFO_DONE, start FifoTask_idle phase
to send signal without carrier and it lasts for a duration of (110ms — T_data). This
phase is designed to guarantee the time point the first FifoTask_repeat is 110ms
later after IR is started. After FifoTask_idle is finished, trigger
IRQ_PWMO_IR_DMA_FIFO_DONE.

In interrupt function of IRQ_PWMO_IR_DMA_FIFO_DONE, start the first
FifoTask_repeat. Each FifoTask_repeat lasts for 110ms. By adding FifoTask_repeat
in corresponding interrupt function, IR repeat signals can be sent continuously.

The time point to stop IR is not certain, and it depends on the time to release the
button. After the APP layer detects key release, as long as FifoTask_data is correctly
completed, IR transmission is finished by manually stoppng IR DMA FIFO mode.

Following shows some optimization steps for the IR timing design above.

1)

2)

Since FifoTask_repeat timing is fixed, and there are many DMA FIFOs in IR DMA
FIFO mode, multiple FifoTask_repeat of 110ms can be assembled into one
FifoTask_repeat*n, so as to reduce the number of times to process
IRQ_PWMO_IR_DMA_FIFO_DONE in SW.

Corresponding to the processing of “ADD_REPEAT_ONE_BY_ONE” macro defined
as 0, the Demo herein assembles five IR repeat signals into one FifoTask_repeat*5.
User can further optimize it according to the usage of DMA FIFOs.

Based on step 1), combine FifoTask ilde and the first “FifoTask _repeat*n” to form
“FifoTask_idle_repeat*n”.

The figure below shows optimized IR timing.

AN-19112700-E1 183 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

\\\\Eif?Taskidata FifoTask idle repeat*n FifoTask repeat#*n

~— 110mS —— | ~——— 110 mS * n

110 mS * n

data

eeeccece

repeat

/ 1 2,3... n 1 2,3... n

IR start

repeat
repeat
repeat
repeat

IR dma fifo done

IR dma fifo done
interrupt

IR dma fifo done
interrupt

interrupt

Figure 10-6 IR Timing 2

As per the IR timing design above, corresponding code in SW flow is shown as below:

At IR start, invoke the function “ir_nec_send”, enable FifoTask_data, and use interrupt to
control the following flow. In the interrupt when FifoTask_data is finished, enable
FifoTask_idle. In the interrupt when FifoTask idle is finished, enable FifoTask repeat.
Before manually stopping IR DMA FIFO mode, FifoTask_repeat is executed continually.
void ir nec_send (u8 addrl, u8 addr2, u8 cmd)

{

//Add FifoTask _data to Dma

ir send ctrl.is sending = IR SENDING DATA;

ir send ctrl.sending start time = clock time();

pwm_ start dma ir sending();

void rc_ir irq prc(void)

{

if(reg pwm irqg sta & FLD IRQ PWMO IR DMA FIFO DONE)
{

reg pwm _irqg sta = FLD IRQ PWMO IR DMA FIFO DONE;

if (ir send ctrl.repeat enable) {

if (ir _send ctrl.is sending ==

IR_SENDING DATA) {

ir send ctrl.is sending IR _SENDING REPEAT;

//Add FifoTask _idle_repeat*n to Dma

pwm_start dma ir sending();

AN-19112700-E1 184 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

else if (ir send ctrl.is sending == IR SENDING REPEAT) {
/IAdd FifoTask_repeat*n to Dma

pwm start dma ir sending();

}

else(

ir send release();

10.2.4 IR Initialization
10.2.4.1 rc_ir_init

IR initialization function is shown as below. Please refer to demo code in SDK.

void rc_ir init(void)

10.2.4.2 IR Hardware Configuration
The demo code is as below:
pwm n_ revert (PWMO ID);
gpio_set func(GPIO PAO, AS PWMO) ;
pwm_set mode (PWMO ID, PWM IR DMA FIFO MODE) ;
pwm_set phase (PWMO_ID, 0); //nophase at pwm beginning
pwm set cycle and duty (PWMO ID, PWM CARRIER CYCLE TICK,
PWM CARRIER HIGH TICK);
pwm_set dma address (&T dmaData buf);
reg irqg mask |= FLD IRQ SW PWM EN;

reg pwm _irqg sta = FLD IRQ PWMO IR DMA FIFO DONE;

Since only PWMO supports ID DMA FIFO mode, PAOQ is selected to correspond to PWMO
herein.

In the demo, IR carrier frequency is 38K, cycle is 26.3us, and duty cycle is 1/3. The API
“pwm_set_cycle_and_duty” should be used to configure the cycle and duty cycle. Since
all FifoTasks share the same carrier frequency, the carrier of 38K can meet the
configuration requirement, and PWM shadow mode is not needed.

DMA FIFO buffer is “T_dmabData_buf”,
Enable system interrupt mask “FLD_IRQ_SW_PWM_EN”.

AN-19112700-E1 185 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook
Clear system status “FLD_IRQ_PWMO_IR_DMA_FIFO_DONE".

10.2.4.3 IR Variable Initialization

Related variables in the SDK demo includes waveform_start_bit_1st,
waveform_start _bit _2nd, and etc.

As introduced in IR timing design, FifoTask data and FifoTask_repeat should be
configured.

Start signal = 9ms carrier signal + 4.5ms low level signal (no carrier). Call
“pwm_config_dma_fifo_waveform” to configure the two corresponding DMA FIFO data.

/Istart bit, 9000 us carrier, 4500 us low

waveform start bit 1lst = pwm config dma fifo waveform(l,
PWMO PULSE NORMAL, 9000 *
CLOCK;SYS_CLOCK;ZUS/PWM_CARRIER_CYCLE_TICK);

waveform start bit 2nd = pwm config dma fifo waveform(O,
PWMO PULSE NORMAL, 4500 *
CLOCK;SYS_CLOCK;ZUS/PWM_CARRIER_CYCLE_TICK);

ul6e waveform stop bit 2nd;

The method also applies to configure stop signal, repeat signal, data logic “1” signal, and
data logic “0” signal.

10.2.5 FIFO Task Configuration
10.2.5.1 FIFO Task_data

As per demo IR protocol, to send a cmd (e.g. 7), first send start signal, i.e. 9ms carrier
signal + 4.5ms low level signal (no carrier); then send “address+ ~address+ cmd +
~cmd”. In the demo code, address is 0x88.

When sending the final bit of “~cmd”, logical “0” or logical “1” always contains some non-
carrier signals at the end. If “~cmd” is not followed by any data, there may be a problem
on Rx side: Since there’s no boundary to differentiate carrier, the FW does not know
whether the non-carrier signal duration of the final bit is 560us or 1690us, and fails to
recognize whether it’s logical “0” or logical “1”.

To solve this problem, the Data signal should be followed by a “stop” signal which is
defined as 560us carrier signal + 500us non-carrier signal.

Thus, the FifoTask_data mainly contains the three parts below:

1) start signal: 9ms carrier signal + 4.5ms low level signal (no carrier)
2) data signal: address+ ~address+ cmd + ~cmd
3) stop signal: 560us carrier signal + 500us non-carrier signal

The code below is used to configure DMA Fifo buffer and start IR transmission.
//// set waveform input in sequence //////

T dmaData buf.data num = 0;

/lwaveform for start bit

AN-19112700-E1 186 Ver.1.0.0

“EM'CO”"”CTORb Telink TLSR8232 BLE SDK Developer Handbook

T dmaData buf.data[T dmaData buf.data num ++]=
waveform start bit 1st;

T dmaData buf.data[T dmaData buf.data num ++]=
waveform start bit 2nd;

/ladd data
u32 data = (~cmd)<<24 | cmd<<1l6 | addr2<<8 | addrl;
for(int i=0;i<32;1i++) {
if (data & BIT(i)) {
/lwaveform for logic_1
T dmaData buf.data[T dmaData buf.data num ++] =
waveform logic 1 1st;
T dmaData buf.data[T dmaData buf.data num ++] =
waveform logic 1 2nd;
}
else{
/lwaveform for logic_0
T dmaData buf.data[T dmaData buf.data num ++] =
waveform logic 0 1st;
T dmaData buf.data[T dmaData buf.data num ++] =

waveform logic 0 2nd;

Ilwaveform for stop bit

T dmaData buf.data[T dmaData buf.data num ++]
waveform stop bit 1st;

T dmaData buf.data[T dmaData buf.data num ++] =
waveform stop bit 2nd;

T dmaData buf.dma len = T dmaData buf.data num * 2;

pwm_start dma ir sending();

10.2.5.2 FifoTask idle
As introduced in IR timing design, FifoTask_idle lasts for the duration “110mS — T_data”.

Record the time when FifoTask_data starts:

AN-19112700-E1 187 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

ir send ctrl.sending start time = clock time();

Then calculate FifoTask_idle time in the interrupt triggered by completion of
FifoTask data:

110mS — (clock_time() - ir_send_ctrl.sending_start_time)
Demo code:

u32 tick 2 repeat sysClockTimerleM = 110*CLOCK 16M SYS TIMER CLK 1MS

(clock time() - ir send ctrl.sending start time);
u32 tick 2 repeat sysTimer =
(tick 2 repeat sysClockTimerl6M*CLOCK SYS CLOCK 1US>>4);

Please pay attention to time unit switch. As introduced in Clock module, System Timer
frequency used in software timer is fixed as 16MHz. Since PWM clock is derived from
system clock, user needs to consider the case with system clock rather than 16MHz (e.g.
32MHz, 48MHz).

FifoTask_idle does not send PWM waveform, which can be considered to continually
send non-carrier signal. It can be implemented by setting the first parameter “carrier_en”
of the API “pwm_config_dma_fifo_waveform” to O.

waveform wait to repeat = pwm config dma fifo waveform(O,
PWMO _PULSE NORMAL, tick_Z_repeat_sysTimer/PWM_CARRIER_CYCLE_TICK) ;

10.2.5.3 FifoTask_repeat
As per Demo IR protocol, repeat signal is 9ms carrier signal + 2.25ms non-carrier signal.

Similar to the processing of FifoTask data, the end of repeat signal should be followed
by 560us carrier signal as stop signal.

As introduced in IR timing design, repeat signal lasts for 110ms, so the duration of non-
carrier signal after the 560us carrier signal should be:

110mS — 9mS — 2.25mS — 560uS = 99190uS
The code below shows the configuration for a complete repeat signal:
/lrepeat signal first part, 9000 us carrier, 2250 us low

waveform repeat 1lst = pwm config dma fifo waveform(l,
PWMO_PULSE NORMAL, 9000 *
CLOCK SYS CLOCK 1US/PWM_CARRIER CYCLE TICK) ;

waveform repeat 2nd = pwm config dma fifo waveform(O0,
PWMO PULSE NORMAL, 2250 *
CLOCK SYS CLOCK 1US/PWM_CARRIER CYCLE TICK);

/lrepeat signal second part, 560 us carrier, 99190 us low

waveform repeat 3rd = pwm config dma fifo waveform(l,
PWMO_PULSE NORMAL, 560 * CLOCK SYS CLOCK 1US/PWM CARRIER CYCLE TICK) ;

waveform repeat 4th = pwm config dma fifo waveform(0,
PWMO PULSE _NORMAL, 99190 *
CLOCK SYS CLOCK 1US/PWM_CARRIER CYCLE TICK);

AN-19112700-E1 188 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

T dmaData buf.data[T dmaData buf.data num
T dmaData buf.data[T dmaData buf.data num
T dmaData buf.data[T dmaData buf.data num

T dmaData buf.data[T dmaData buf.data num

++]
++]
++]

++]

waveform repeat 1st;
waveform repeat 2nd;
waveform repeat 3rd;

waveform repeat 4th;

10.2.5.4 FifoTask_repeat*n&FifoTask_idle_repeat*n

By simple superposition in DMA Fifo buffer, “FifoTask_repeat*n” and
“FifoTask_idle_repeat*n” can be implemented on the basis of FifoTask_idle and

FifoTask_repeat.

10.2.6 Check IR Busy Status in APP Layer

In the Application layer, user can use the variable “ir_send_ctrl.is_sending” to check

whether IR is busy sending data or repeat signal.

ir_send_ctrl.is_sending

As shown in the demo code below, when IR is busy, MCU cannot enter suspend.

if(ir send ctrl.is sending)

{

bls pm setSuspendMask (SUSPEND DISABLE) ;

AN-19112700-E1 189

Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

11. Drivers in BLE SDK
11.1 External Capacitor for 24 MHz Crystal

By default, SDK uses internal capacitor of TLSR8232 MCU (i.e. cap corresponding to
ana_81<4.0>) as matching capacitor of 24MHz crystal oscillator, which is measurable
and adjustable in Telink jig system to reach optimal frequency point value of final
application product.

If an external soldered capacitor needs to be use as the matching capacitor of 24MHz
crystal oscillator instead, the API below should be called at the beginning of main
function and before “cpu_wakeup_init” function.

static inline void blc_app_setExternalCrystalCapEnable (u8 en)
{

blt miscParam.ext cap en = en;
}

As long as this API is called before “cpu_wakeup_init’, SDK will automatically implement
all operations (e.g. disable internal matching capacitor and stop reading frequency offset
calibration value).

11.2 Select 32kHz Clock Sources

By default SDK uses internal 32kHz crystal, i.e. 32kHz RC. The error of this crystal is
large, so its accuracy will be influenced for applications with long suspend time. Currently
32kHz RC supports up to 3s suspend by default. Once the suspend time exceeds 3s,
inaccurate packet Rx time will be caused by BLE timing error; this case usually needs
packet Rx/Tx retry, thus to increase power consumption and result in disconnection.

To ensure time accuracy for long suspend applications, external 32kHz crystal (i.e.
32kHz pad) should be used instead. Currently SDK supports this mode.

Call either of the two APIs below at the beginning of main function (must before
“cpu_wakeup_init” function) to select 32kHz RC or 32kHz pad.

void blc_pm select_internal 32k crystal (void);

void blc_pm select_external 32k crystal (void);

SDK chooses 32k RC by default by calling “blc_pm_select_internal_32k_crystal”. For 32k
pad, call “blc_pm_select_external_32k_crystal”.

11.3 EMI
11.3.1 EMI Test

5316 SDK provides project “EMI Test”. Users can see “app_emi.c” in the project folder of
“5316_driver_test”, see “emi.c and emi.h” in driver/5316 files for related documents. To
use EMI, users need to set the marco “DRIVER_TEST_MODE” in “app_config.h to
“TEST_RF_EMI”.

AN-19112700-E1 190 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

EMI Test supports four test mode: Carrire mode (send carrier only), CD mode (send
Carrirer with data), RX mode, TX mode. TX mode supports three sub-modes with
different packet types.

struct test list s ate List[] = {
{0x01,emicarrieronly},
{0x02,emi_con_prbs9},
{0x03,emirx},
{0x04,emitxprbs9},
{0x05,emitx55},
{0x06,emitx0f},

}s

11.3.1.1 Carrier Mode
Carrier mode is used to test the sending of carrier. The function is:
void emicarrieronly(RF_ModeTypeDef rf mode,
RF_TxPowerTypeDef pwr,

signed char rf_chn);

Parameters:
rf_mode Set RF mode, RF_MODE_BLE_1M and RF_MODE_BLE_2M are
optional
pwr Set tx power, see the definition of RF_TxPowerTypeDef for its values.
rf_chn Set RF channel, the channel actually used is (2400+rf_chn).

11.3.1.2 CD Mode
CD mode is used to test the sending of carrirer with data. The function is:
void emi_con_prbs9(RF_ModeTypeDef rf_mode,
RF_TxPowerTypeDef pwr,

signed char rf_chn)

Parameters:
rf_mode Set RF mode, RF_MODE_BLE_1M and RF_MODE_BLE_2M are
optional
pwr Set tx power, see the definition of RF_TxPowerTypeDef for its values.

AN-19112700-E1 191 Ver.1.0.0

(TELINIG

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

rf_chn Set RF channel, the channel actually used is (2400+rf_chn).

11.3.1.3 TX Mode

Tx mode can send packets of three different types, PRBS9 packet payload, 00001111
packet payload, 10101010 packet payload. Users can choose different Tx modes by
cmd.

To send the three packets, the functions below should be called:
void emitxprbs9(RF_ModeTypeDef rf_mode,
RF_TxPowerTypeDef pwr,
signed char rf_chn);
void emitx@f(RF_ModeTypeDef rf_mode,
RF_TxPowerTypeDef pwr,
signed char rf_chn)
void emitx55(RF_ModeTypeDef rf_mode,
RF_TxPowerTypeDef pwr,

signed char rf_chn)

Parameters:
rf_mode Set RF mode, RF_MODE_BLE_1M and RF_MODE_BLE_2M are
optional.
pwr Set tx power, see the definition of RF_TxPowerTypeDef for its values.
rf_chn Set RF channel, the channel actually used is (2400+rf_chn).

11.3.1.4 RX Mode

Rx mode receives data and records the number of received data by poll. The function
is:

void emirx(RF_ModeTypeDef rf_mode,
RF_TxPowerTypeDef pwr,
signed char rf_chn);

signed char rf _chn)

Parameters:

AN-19112700-E1 192 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

rf_mode Set RF mode, RF_MODE_BLE_1M and RF_MODE_BLE_2M are
optional.

pwr Set tx power, see the definition of RF_TxPowerTypeDef for its values.

rf_chn Set RF channel, the channel actually used is 2400+rf_chn).

Note: EMI test is a demo project provided by Telink. Users can use this project to
complete their own testing, and customize their own testing methods by calling related
functions.

11.3.2 EMI Test Tool

Telink provides EMI Test Tool in order to facilitate testing. “EMI Test Tool” can be used
with “EMI test” in project “56316_driver_test” to implement EMI test easily. The tool
interface is shown as below.

) EMLTEST v1.1 [SRACE X

Log_Window:

SWIRE -
Sefting:
2402 Set_Channel

7dbm > Set_Power
BLE_1M v Set RF_Mode

Carrier:

Carrier l ’ CarrierData

™ Unlimited -

] [n] (o

RX:

Read_Rx_Cnt

e

Figure 11-1 EMI Test Tool

Step 1: User can select hardware connection method as needed. When “Swire” is
selected, if system clock is 16MHz or below, it's needed to implement “SWB SPEED”
(click “SWB SP”) on Wtcdb tool to ensure normal communication.

ISWIRE ~|

SWIRE
RUSB

Figure 11-2 Select Data Bus

AN-19112700-E1 193 Ver.1.0.0

'SEM'CO"’”"‘TO Telink TLSR8232 BLE SDK Developer Handbook

T
IE:\Gi:_app\bla_l:_app\ble_l:_sdk\&zﬁﬁ_fea:ure_:es: j BIN... Gpen
I DEF.__ . Ini
BIN Isazn vl OTF Program, |*30l?-E j |EE| I |i'bY=E |USB J thcﬂb ini
8266 feature test.bin Flash Sector (4K) Erase at address 0

address 1000
address 2000
address 3000
address 4000
address 5000
address €000
address 7000
address 8000
address 3000
address 2000
address b000
address <000

Flash Sector (4E) Erase &
Flash Sector (4K) Erase &
Flash Sector (4E) Zrase =
Flash Sector (4K} Erase a
Flash Sector (4E) Zrase =
Flash Sector (4K} Erase a
Flash Sector (4K) Erase &
Flash Sector (4E) Zrase =
Flash Sector (4K) Erase &
Flash Sector (4E) Zrase =
Flash Sector (4K} Erase a
Flash Sector (4E) Zrase =
Flash Sector (4K) Erase at address d000
Flash Sector (4K) Erase at address e000
Flash Sector (4K) Erase at address £000
Total Time: 1232 ms

tedb -i 8266 feature test.bin —b

TC3z EVK: Swire OK
Flash Sector (4K) Erase & Program at address 0
Flash Sector (4K) Erase & Program at address 1000
Flash Sector (4K) Erase & Program at address 2000
file dowlcad to 00000000: 3264 bytes
Total Time: 783 ms

(8] set swire master speed: tcdb sp §

k' set swire slave speed: tedb we b2

TC3Z EVE: Swire OK

o o ottt oof of of of of of of o o

~

=t swire master speed: tedb sp 5
set swire slave speed: tedbk we b2
TC3z EVE: Swire OK
Tcn:al Time: 0 ms

~TRACE— - Firware ~UART— M § R _— ey
tr Start | USB Text ClEar SEVE I \redb.exe W = =
sz

4k vCD | SRAEM 1s Tdebug ErasEFl mng3¢| ReadF | FlashIDl EEadPCl Cale |puwaroﬂi CTRL ©

SWB SP
33 View | SWB | Hex Hndl REadIDl PktCaperasE324 ascncul NutEPadl Roocol np:d.bl Close

m,

E— - [_mar A

Figure 11-3 Swire synchronization operation

Step 2: Set “chn”, i.e. input frequency (e.g. 2402) in the corresponding box and click
“Set_Channel”. The log window will show “Swire OK” to indicate normal communication,
as shown below.

L B TEST -

Lo Window:
r - AR AR LR RN R R R R AR RN R R R a
|FNIRE 2 Set Parameter

2402 ‘.‘l'ﬁiﬁ' FERRAER R E R AR R
Set_Chann TE32 BV Swire OK
Total Time: 0 ms

(7dbm i sﬁ P AR SAES SRS SR ESE SIS SR SR SIS RIS
: - > @Start Test Command
E—E_l“ - M—Hm R LR R R
- - : TC32 g
Carrier: Tatal
Carrier CarrierData
T Unlimited -

PRBSS | | (w55 ool

RxTest

Read_Rx_Cnt ReadRssi

Figure 11-4 Set Channel

AN-19112700-E1 194 Ver.1.0.0

'SEM'CO"’””CTORb Telink TLSR8232 BLE SDK Developer Handbook

Step 3: Select power level and BLE mode via the corresponding drop-down box, and

click “Set_Power”’/"Set_ RF_Mode”.

[|BLE_2M - Set_RF_Mode

C:BLE_1IM
lzigbee_lﬁl}l(

Figure 11-5 Select RF Mode

T)_ Log_Window:
Total Time: O ms
ME '_ CER R LR R R R L R R LR R R R R L

@Start Test Command

RIS EETEA A IEETERSSS LTI
)) TC3Z EVK: Swire OK
2402 Set_Channel Total Time: O ms

e TT L Lt T
S Set Parameter
m - w e R R R g

e Y

i@ Set RF Mode:Sdbm

FEEEEEEEE AEEEEEERE R

T %) anat e
Total Tirme: O mes
T+ | T LT
Carrier CarrierData @Start Test Command
TC32 EVEC: Swire O%
T Unlimited - Total Time: 0 ms
LR RN L P R R R R R L R R L
[[] Set Parameter
m mss M e e R

FEEEEEEE RN NN

i@ Set T Power:BLE_2M

Lt R RS E R

TC32 EVE: Dwire
Total Time: 0 ms

R Y

@Start Test Command
TC32 EVE: Swire 0K
Total Time: 0 ms

RxTest

Read_Rx_{nt Readissi

Figure 11-6 Interface After RF Mode Setting

Step 4: Click “Carrier’/“CarrierData”/“RXTest"/“PRBS9"/“0x55"/“Ox0f” to enter

corresponding test mode.

m

AN-19112700-E1 195

Ver.1.0.0

'-‘E'"""”""CTW& Telink TLSR8232 BLE SDK Developer Handbook

Log_Window:

Total Time: 0 ms
axnrnEs T ea—

end Start Carrier Command

Setting: . ErEzaEaEEERRETAEE
TC32 EVEK: Swire OK
Total Time: 0 ms
24&2 5ﬂ_ﬂ‘lml'lﬂ I E PSR R IR PR R R E R PR R RN LR R R R R R R RN,

Set Parameter
Sdbm - Set_Power O T T

TC32 EVEK: Swire OK
Total Time: 0 ms

1 R R R R R PR R R R AR P R R PR E R R RN PR R E R R R
Carrier CarrierData @ Send Start CarrierData Command
EE R R R RS PR R R R R P R R R E R R R E R R E R R R

TC32 EVEK: Swire OK

X Unlimited - Total Time: 0 ms
T
(] Set Parameter
| ml Ch:SS | | M B e S R e

e LR R N PR R R R R PR RN
aend Rx Command
RY: LR EES RN PR PRI RS R PR RN
TC32 EVE: Swire OK
Total Time: 0 ms

RocTest AR AR R AR EA AR KRR AR

@ Send Start Rx Command

TC32 EVEK: Swire OK
.Read_Rx_CﬂtI l ReadRssi _ Total Time. 0 ms

Figure 11-7 Select Test Mode

Step 5: In TX mode, user can select to send 1000 packets or unlimited packets.

LS Inlimited

= [0]

Figure 11-8 Set TX Packet Number

AN-19112700-E1 196 Ver.1.0.0

LTELINIS

Telink TLSR8232 BLE SDK Developer Handbook

_SW'I.H.E =
Satting:
R ooz | Set_Channel
|5dbm - Set_Power
BE2M ~| | setRF Mode |
Caries
Carrier CarrierData
T Unlimited -
PRES9 55 rmfl
04
RucTest
Read_Rx_Cnt ReadRissi

e L LR PP

the numbser of packet Command

L R PR EY

i Send Tx(PRESS) Comm

LR L

and

TC32 EVE: Swire 0K
Totad Time: 0 ms

D R T P e P

i@ Send Start Tx(PRBES9) Command

EERRS R RN R R R RN R R R R R P R R R R R R Y

T332 EVE: Swire OK

Total Time: 0 ms

.
Set Parameter

EEAEEREERR RN R AR AR AR R AR AR

LR R R RN RN R R R R R RN R PR PR R R R RN R

i@ Set the number of packet Command

TC32 EVE: Swire 0K
Total Time; 0 ms

________ N B

B e e
TC32 EVE: Swire QK
Taotad Time: 0 ms

O

@ Send Start Tx(0x55) Command

L

TC32 EVE: Swire DK
Totad Time: 0 ms

Figure 11-9 TX Mode Interface

Step 6: In RX mode, number of received packets can be read by clicking “Read_Rx_Cnt”,
while current RSSI can be obtained by clicking “ReadRssi”, as shown below.

evi st v S, T . T 2=

SWIRE ~

Setting:

2402 Set_Channel

Log_Window:

@ Send Start CarrierData Command

TC32 EVK: Swire OK
Total Time: 0 ms

Set Parameter

7dbm - Set_Power
BLE_1M - Set_RF_Mode

@' Bend Rx Command 3

TC32 EVK: Swire OK
Total Time: 0 ms

Carrier:
@ Send Start Rx Command
‘ Carrier ‘ CarrierData
TC32 EVK: Swire OK
Total Time: 0 ms
X Unlimited -
@ Read the number of received packets =
‘PRBSQ‘ ‘[IXSS‘ ‘Dxﬂf‘ X Rl Suire OK
0000 of 12 00 00
otd Frms
RX: @ the number of received packe§:4719
@ Read the value of the RSSI
T K: Swire OK
. otar lime: 0 ms
‘ Read Rx_Cnt ‘ ReadRssi @ the value of t

Figure 11-10 Read RX Packet Number and RSSI

AN-19112700-E1

197 Ver.1.0.0

(TELINIS

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

11.4 PHY Test

To be added.

AN-19112700-E1 198 Ver.1.0.0

'SEM'CO"’””CTORb Telink TLSR8232 BLE SDK Developer Handbook

12. BLE SPP Module

Telink’s BLE module provides SPP (Serial Port Profile) data transmission, therefore
users do not need to care about the implementation details of BLE and can focus on the
data.

12.1 Command and Data Packet Format

Telink BLE module use UART interface to communicate with Host. Telink provides
corresponding commands and events for BLE module for users.

Table 12-1 BLE SPP Command (From Host to Telink BLE module)

cmdID 2 Command ID
ParalLen 2 Length of parameters
Parameters n Parameter payload

Table 12-2 BLE SPP Events (From Telink BLE Module to Host)

Token 1 Always be OxFF
ParalLen 1 Length of parameters
eventld 2 Event ID

Parameters n Parameter payload

BLE SPP command indicates a command sent from the Host to Telink BLE module,
while BLE SPP event indicates a synchronous event or an asynchronous event sent
from Telink BLE module to the Host.

A synchronous event is the acknowledgement event corresponding to a command, e.g.
“Command Complete event”.

An asynchronous event is the report event to indicate that something has happened to
Telink BLE module, e.g. data has been received (“Data Received event”).

AN-19112700-E1 199 Ver.1.0.0

O®SEMIC OENéll[Tgi‘b

Telink TLSR8232 BLE SDK Developer Handbook

Please refer to Table 12-3 and Table 12-4 for general commands and events.

Table 12-3 General AT Command Set

Interval:
Set Advertising e.g. 0x0050 9. Command
OxFFO1 0x0002
Interval S 01 FF 0200 Complete event
Advertising interval = 80* 50 00
0.625ms = 50ms
<=0x0010 . e.g.
Set Advertising Data set: Command
o OXFF02 eq. 02 FF 06 00 |
ata e.g. 01 02 03 04 05 06 01020304 | Complete event
0x0006 05 06
Enable/Disable Enable: 0x01 eg. Command
o OXFFOA | 0x0001
Advertising Disable: 0x00 8? FF 01 00 Complete event
Get Module c q
omman
Available Data OxFFOC 0x0000 NA OC FF 0000 c et)
omplete even
Buffer P
0x00: connectable undirected adv e.q.
Set Advertising 0x01: connectable directed adv ODFF0100 | Command
OxFFOD 0x0001
Type 0x02: scannable undirected adv | 0 Complete event
0x03: non-connectable adv
Parameter 1: dirAddrType
0x00: Public Address €g.
Set Advertising Command
_ OXFFOE | 0x0007 | 0x01: Random Address OE FF 0700
Direct Address 0001 02 03 Complete event
Parameter 2: dirAddress 04 05 06
e.g. 01 0203 04 05 06

AN-19112700-E1

200

Ver.1.0.0

O®SEMIC OENéll[Tgi‘b

Telink TLSR8232 BLE SDK Developer Handbook

Parameter 1: addrType

0x00: Public Address

parameters

)] OF FF 07 00
Add White List Command
OxFFOF 0x0007 0x01: Random Address 00010203
Entry Complete event
04 05 06
Parameter 2: address
e,g, 01 02 03 04 05 06
Parameter 1: addrType
e.g.
0x00: Public Address
10 FF 07 00
Delete White Command
) OxFF10 0x0007 0x01: Random Address 00 01 02 03
List Entry Complete event
04 05 06
Parameter 2: address
e.g. 01 02 03 04 05 06
Reset White Command
) OxFF11 0x0000 NA 11 FF 00 00
List Entry Complete event
00: All device
01: connReq from all device,
scanReq from WL e.g.
Set Filter OXFF12 OX0001 Command
X X . :
Policy 02: scanReq from all device, 12 FF 01 00 Complete event
connReq from WL 00
03: scanReq and connReq from
WL
<=0x0012 | Device name in hex format 13 FF0A 00
Set device OXFF13 01020304 Command
X
name e.g. e.g. 01 0203 04 05 06 07 08 09 05 06 07 08 Complete event
0x000A 0A 09 0A
Get connection Command
OxFF14 0x0000 NA 14 FF 00 00

Complete event

AN-19112700-E1

201

Ver.1.0.0

O®SEMIC OENéll[Tgi‘b

Telink TLSR8232 BLE SDK Developer Handbook

Parameters:

ul6 intervalMin;

e.g. 0x0O0AO means current
device accepts minimum
connection interval
0xA0*1.25ms=200ms

ul6 intervalMax;

e.g. OXO0A2 means current

MAC address in the MAC table

))) 15 FF 08 00
Set connection device accepts maximum Command
OxFF15 0x0008 o A0 00 A2 00
parameters connection interval Complete event
00 002C 01
0xA2*1.25ms=202.5ms
ul6 connlLatency;
e.g. 0x0000 means current
device expects new latency 0x00
ul6 connTimeout;
e.g. 0x012C means current
device expects new timeout
0x12C*10ms=3000ms
Get module’s
Command
current work OxFF16 0x0000 NA 16 FF 00 00
Complete Event
state
Terminate Command
) OxFF17 0x0000 NA 17 FF 00 00
connection Complete Event
No Command
Restart Module OxFF18 0x0000 NA 18 FF 00 00
Complete Event
fEnable
Enable or
Disable MAC ‘0x01’: enable MAC binding 19 FF 01 00 Command
o OxFF19 0x0001) o
Binding function. After MAC binding is 01/00 Complete Event
Function enabled, only the devices with

AN-19112700-E1

202

Ver.1.0.0

"5'"'“’”""‘70"& Telink TLSR8232 BLE SDK Developer Handbook

can be connected with this
module.
‘0x00’: disable MAC binding
function
MacAddr
Add device’s MAC address to be added into e.g.
MAC address A MAC binding table. 1A FE 06 00 Command
o X X
to MAC binding Note: MAC table supports public | B4 CE BF 01 | Complete Event
table MAC address only. E7 60
e.g. B4 CEBF 01 E7 60
MacAddr eg.
Delete a MAC MAC add to be deleted f C d
address to be deleted from omman
item from MAC | OXFF1B | 0x0006 | .~ . " 1B FF 06 00 comblete Event
inding table. omplete Even
binding table 9 B4 CE BF 01 P
e.g. B4 CE BF 01 E7 60 E7 60
Handle (2 bytes) of the
Attribute “Service to client”
e.g.
<=0x0016 | ¢ o oxo011 i
e Command
Send Data OxFF1C e.q. 1C FF 0700
Data payload (Max Len: 11 00 01 02 Complete Event
0x0007
20bytes) 03 04 05
E.g. 01,02,03,04,05

Table 12-4 General Events

corresponding to the | Indicates status

command information e
Command 9-
Complete Synchronous | OxFF 0x03 Rule: Success: 0x00 FF 03 01 07

event 00
eventlD = (cmdID & | Others: ble error
0x03FF) | 0x0400 code, @ble_sts_t
AN-19112700-E1 203 Ver.1.0.0

O®SEMIC OENéll[Tgi‘b

Telink TLSR8232 BLE SDK Developer Handbook

e,g, 0x0701
(cmdID=0xFFO01,
corresponding to the
“Set Advertising
Interval” command)
Variable: data (indicates
n+2 received data, n e.g.
Data received bytes)
Asynchronous | OXFF Eg.If 0x07A0 FF 08 A0 07
event :
01020304
n=6, Len Eg.01,02,03,04, | 0506
is 0x08 05, 06
State:
0x00: OK
other: Fail
Get Available Buffer Size: e.g.
Buffer Num OxFF 0x04 0x070C
u u Asynchronous | X X X " FF 03 0C 07
Event yte 00 04
Eg:
state = 0x00
Buffer Size = 0x04
Connection OxFF 0x02 0x0783 NA
X X X
Event Asynchronous FF 02 83 07
Terminate OxFF 0x02 0x0784 NA
X X X
Event Asynchronous FF 02 84 07
Channel map OxFF 0x02 0x078 NA
X X x078a
change Event Asynchronous FF 02 8a 07
Connection
parameter Asynchronous | OXFF 0x02 0x078b NA FF 02 8b 07
update Event
Get Module e
C t Work OxFF 0x04 0x0716 No connected: ¢
urrent Wor X X X
Asynchronous 0x0100 FF 04 0716
State 0001
AN-19112700-E1 204 Ver.1.0.0

'“-""’CONWCTORb Telink TLSR8232 BLE SDK Developer Handbook

Connected:

0x0800

12.2 Function Description

To illustrate function of the module, conection between the module and a phone is taken
an example. The app in the phone is LightBlue, the software in PC is a serial port
assistant. The hardware connection is as below.

Telink module

. GND ¢ GND
BLE connection . [PC
TX RX Serial Port Tool 0
App:
™

Figure 12-1 Module Hardware Connection

As Figure 12-1 shows, Telink module connects serial port tool via wires, serial port tool
connects PC via USB, the serial port assistant in PC establishes soft connection with
serial port tool, thus the working environment of the module is established. Before using
the module function, the Firmware should be burned to the module. 5316 BLE SDK
provides module project, users only need to compile the module project to obtain the bin
file (Note: the bin file in this documents sets BLE_MODULE_PM _ENABLE to @ to
disable low power, then use EVK to burn the bin file to telink module. After the
Module powers on, it sends Adv packets by default, the phone enables Bluetooth and
enters LightBlue, starts scan. The phone scans the module device (see Figure 12-2) and
establishes connection with BLE (see Figure 12-3).

AN-19112700-E1 205 Ver.1.0.0

LTELINIS

Telink TLSR8232 BLE SDK Developer Handbook

ull FEBH 10:32

Sort LightBlue | Explorer Filter

8@ v21%0)

Enjoying LightBlue Explorer?
Learn about our insights into BLE

4l GModule

- No services

.l 8594F4640CBB

-90 No services

Al Unnamed
-69 No services

Al Unnamed
-70 No services

4l Unnamed

ull FEBH = 10:33 B@v21%0)
¢ Back Peripheral Clone
GModule
UUID: 17731B4D-5D47-D1C0-E033-68F39A00564C
Connected
ADVERTISEMENT DATA Show

Device Information

PnP ID
<028a2466 820100>

UuID:
00010203-0405-..-0A0BOCOD1910
Telink SPP: Module->Phone

Properties: Read Notify
UUID: 00010203-0405-0607-0809-0A0BOCOD2B10

Telink SPP: Phone->Module

Properties: Read Write Without Response

-57 No services UUID: 00010203-0405-0607-0809-0A0BOCOD2B11

Al Unnamed

: UuID:
-66 No services

00010203-0405-..-O0AOBOCOD1912

Info @ Log Info @ Log

Figure 12-2 Scan Module Device Figure 12-3 Connect Module Device

After Telink module establishes BLE connection with the phone, in the phone App, users
can see two “Telink SPP”, one is “Module->Phone” used for sending data to the phone
from the module, another “Phone->Module” used for sending data to the module from the
phone. From the descriptors the data transfer directions are easy to know.

12.2.1 Module Sends Commands and Data

Data interconnection between the PC and the module is via the serial port. Users can
modify the parameters of the serial port (baud rate, odd-even check, stop bit, etc.) in the
module project as needed. The PC can transfer commands and data to the module, while
the module can only report corresponding events to the PC. If it is commands that are
transferred by the PC, the module will process the commands and report an event to the
PC according to the processing result; if it is data that are transferred by the PC, the
module will transfer the data to a remote device via BLE and report an event. Please see
section 12.1 for formats of commands, data and events. Figure 12-4 and Figure 12-5
show the demo of the module sending data to the phone. The part marked by “1” in
Figure 12-4 is the data sent by the module to the phone via command “Send Data” (cmd
ID:0xFF1C); the part marked by “2” is the event reported by the module, which indicates
the success of data transmission. Figure 12-5 shows the data received by the phone are
the same as the data sent by the module.

AN-19112700-E1 206 Ver.1.0.0

LTELINIS

Telink TLSR8232 BLE SDK Developer Handbook

Bl Serial Port Utility

m@g'

Receive Setting

fute Fead Line
D Dizsplay Send
D Display Time

File Edit View Tools Help

Serial Fort Setting 2 o g .
Fort |USE-SER. .. (coms) - | [LEE_83 1C 87 84
FF 82 BC 87
Bandrate [115200 -
racity
P e

() Text @ Hex

1 |1c FF 16 o0 11 @8 81 82 03 84 ©5 06 67 08 09
- 80 ©1 02 83 04 B5 86 07 B8 09 0O 61 02 03
() Text @ Hex
B Lecy 1000 =i ne [1C FF 16 00 11 00 01 0z 03 04 05 0B 07 08 09 00 01 02 03 04 05 06 07 08 [+ |
COM3 OPENED, 115200, 8, NONE, 1, OFF Rx: 13 Bytes Tx: 29 Bytes

Figure 12-4 Module Sending Data

ull FEBH T 11:10 8@ 715%0)

< GModule 0x00010203-0405-060... Hex

GModule

Telink SPP: Module->Phone

UUID: 00010203-0405-0607-0809-0A0BOCOD2B10

Connected

READ/NOTIFIED VALUES

Read again Stop listening
@ Cloud Connect

0102030405060708090001020304050607080900

08:03.665

809000102030405060708090(

DESCRIPTORS

0

Client Characteristic Configuration

Telink SPP: Module->Phone
Info @ Log

Figure 12-5 Phone Receiving Data

12.2.2 Module Receives Data

The phone can send data to the module, the module will report to the PC after it receives
the data, as Figure 12-6 and Figure 12-7 show. The part highlighted by the red rectangle

AN-19112700-E1

207

Ver.1.0.0

/TELIN
'-‘E'"""”""CTW& Telink TLSR8232 BLE SDK Developer Handbook

in Figure 12-6 is the data sent by the phone; the part highlighted by the red rectangle in
Figure 12-7 is the data received by the module.

oll FEBE T 11:27 8@ v14%0)

< GModule 0x00010203-0405-060... Hex

GModule

Telink SPP: Phone->Module

UUID: 00010203-0405-0607-0809-0A0BOCOD2B11

Connected
READ VALUES
Read again
@ Cloud Connect
00000000000000000000C000CO0C00000000000

11:26:55.460

Write new value

00112233445566

11:27:05.576

DESCRIPTORS

Telink SPP: Phone->Module
Charadi

aristic User Description

PROPERTIES

Info Log
Figure 12-6 Phone Sending Data

File Edit View Tools Help
cRHS +~DIINE [)u
Serial Fort Setting A7

Fort [USB-SER... COW v | Eﬁ{: 87 52 15 00 08 11 22 33 44 55 66 |

]
|

resty
|

Eeceive Setting

) Text @ Hex
Auto Feed Line
Display Send
Display Time

Send Setting
() Text @ Hex
Loop 1000 E ms

[IC FF 16 00 11 00 01 02 03 04 05 06 OT 05 09 00 01 02 03 04 05 08 O7 05 09 V]
COM3 OPENED, 115200, 8, NONE, 1, OFF Rx: 18 Bytes Tx: O Bytes

——

Figure 12-7 Module Receiving Data

AN-19112700-E1 208 Ver.1.0.0

/TELIN

ASEMICONDUCIOR Telink TLSR8232 BLE SDK Developer Handbook

12.3 Power Management of Module

The 5316 module project enables low power by default, as the sleep mode of Telink
MCU can only be woken up by GPIO, to implement the low power and the normal
interconnection of data and commands between the module and the Host, the module
project uses two GPIOs as wakeup sources which can be selected according to users’
requirements and hardware design. One GPIO is used to wake up the module so that the
module can receive the commands and data sent by the Host; another GPIO is used to
wake up the Host (if the Host enables low power) so that the Host can receive the events
reported by the module.

If the module enables low power mode, the connection of hardware should be the same
as below:

Telink module Host
. GND K GND
BLE connection . . PC
2 TX o N RX < >
RX | 1T ——

GPIO Module wakeup host. GPIO
GPIO Host wakeup module

GPIO

Figure 12-8 Connection of Hardware When Low Power is Enabled

If users do not use low power, the macro “BLE_MODULE_PM_ENABLE” in
“app_config.h” can be set to 0, the connection of hardware is the same as the demo in
section 12.2 Function Description.

AN-19112700-E1 209 Ver.1.0.0

“EM'CO”""CTORb Telink TLSR8232 BLE SDK Developer Handbook
Appendix
Appendix 1: crcl6 Algorithm

unsigned shortcrclé (unsigned char *pD, int len)

{
static unsigned short poly[2]={0, 0xa001};

unsigned short crc = Oxffff;
unsigned char ds;

int 1i,7;

for (j=len; 3>0; j--)
{
unsigned char ds = *pD++;
for (i=0; 1i<8; i++)
{
crc = (crc >> 1) » poly[(cxrc ~ ds) & 11;

ds = ds >> 1;

return crc;

AN-19112700-E1 210 Ver.1.0.0

	Revision History
	Contents
	Contents of Figures
	1. SDK Overview
	1.1 Software Architecture
	1.1.1 main.c
	1.1.2 app_config.h
	1.1.3 Application File
	1.1.4 BLE Stack Entry

	1.2 Applied ICs
	1.3 library
	1.4 Demo
	1.4.1 BLE Slave Demo
	1.4.2 Other Demos

	2. MCU Basic Modules
	2.1 MCU Address Space
	2.1.1 MCU Address Space Allocation
	2.1.2 SRAM Space Allocation
	2.1.2.1 SRAM and Firmware Space
	2.1.2.2 list File Analysis Demo

	2.1.3 MCU Address Space Access
	2.1.3.1 Peripheral Space Access
	2.1.3.2 Flash Space Operation

	2.1.4 SDK Flash Space Allocation
	2.1.4.1 Space Allocation of 512kB Flash
	2.1.4.2 Space Allocation of 128kB Flash

	2.2 Clock Module
	2.2.1 System Clock & System Timer
	2.2.2 System Timer Usage

	2.3 GPIO Module
	2.3.1 GPIO Definition
	2.3.2 GPIO State Control
	2.3.3 GPIO Initialization
	2.3.4 Configure SWS Pull-up to Avoid MCU Errors

	3. BLE Module
	3.1 BLE SDK Software Architecture
	3.1.1 Standard BLE SDK Architecture
	3.1.2 Telink BLE SDK Architecture
	3.1.2.1 Telink BLE Controller
	3.1.2.2 5316 BLE Slave

	3.2 BLE Controller
	3.2.1 BLE Controller Introduction
	3.2.2 Link Layer State Machine
	3.2.3 Link Layer State Machine Combined Application
	3.2.3.1 Link Layer State Machine Initialization
	3.2.3.2 Idle + Advertising
	3.2.3.3 Idle + Advertising + ConnSlaveRole

	3.2.4 Link Layer Timing Sequence
	3.2.4.1 Timing Sequence in Idle State
	3.2.4.2 Timing Sequence in Advertising State
	3.2.4.3 Timing Sequence in Conn state Slave Role
	3.2.4.4 Conn State Slave Role Timing Protection

	3.2.5 Link Layer TX FIFO & RX FIFO
	3.2.6 Controller HCI Event
	3.2.6.1 HCI Event
	3.2.6.2 HCI LE Event

	3.2.7 Telink Defined Event
	3.2.7.1 BLT_EV_FLAG_ADV
	3.2.7.2 BLT_EV_FLAG_ADV_DURATION_TIMEOUT
	3.2.7.3 BLT_EV_FLAG_SCAN_RSP
	3.2.7.4 BLT_EV_FLAG_CONNECT
	3.2.7.5 BLT_EV_FLAG_TERMINATE
	3.2.7.6 BLT_EV_FLAG_ENCRYPTION_CONN_DONE
	3.2.7.7 BLT_EV_FLAG_DATA_LENGTH_EXCHANGE
	3.2.7.8 BLT_EV_FLAG_GPIO_EARLY_WAKEUP
	3.2.7.9 BLT_EV_FLAG_CHN_MAP_REQ
	3.2.7.10 BLT_EV_FLAG_CHN_MAP_UPDATE
	3.2.7.11 BLT_EV_FLAG_CONN_PARA_REQ
	3.2.7.12 BLT_EV_FLAG_CONN_PARA_UPDATE
	3.2.7.13 BLT_EV_FLAG_SUSPEND_ENETR
	3.2.7.14 BLT_EV_FLAG_SUSPEND_EXIT
	3.2.7.15 BLT_EV_FLAG_PHY_UPDATE

	3.2.8 Controller API
	3.2.8.1 Controller API Brief
	3.2.8.2 API Return Type ble_sts_t
	3.2.8.3 MAC Address Initialization
	3.2.8.4 Link Layer State Machine Initialization
	3.2.8.5 bls_ll_setAdvData
	3.2.8.6 bls_ll_setScanRspData
	3.2.8.7 bls_ll_setAdvParam
	3.2.8.8 bls_ll_setAdvEnable
	3.2.8.9 bls_ll_setAdvDuration
	3.2.8.10 blc_ll_setAdvCustomedChannel
	3.2.8.11 rf_set_power_level_index
	3.2.8.12 bls_ll_terminateConnection
	3.2.8.13 Get Connection Parameters
	3.2.8.14 blc_ll_getCurrentState
	3.2.8.15 blc_ll_getLatestAvgRSSI
	3.2.8.16 Whitelist & Resolvinglist

	3.2.9 2M PHY Supported
	3.2.10 Data Length Extension

	3.3 L2CAP
	3.3.1 Register L2CAP Data Processing Function
	3.3.2 Update Connection Parameters
	3.3.2.1 Slave Requests for Connection Parameter Update
	3.3.2.2 Master Responds to Connection Parameter Update Request
	3.3.2.3 Master Updates Connection Parameters in Link Layer

	3.4 ATT & GATT
	3.4.1 GATT Basic Unit “Attribute”
	3.4.2 Attribute and ATT Table
	3.4.2.1 attNum
	3.4.2.2 perm
	3.4.2.3 uuid, uuidLen
	3.4.2.4 pAttrValue, attrLen
	3.4.2.5 Callback Function w
	3.4.2.6 Callback Function r
	3.4.2.7 Attribute Table Layout
	3.4.2.8 ATT Table Initialization

	3.4.3 Attribute PDU & GATT API
	3.4.3.1 Read by Group Type Request, Read by Group Type Response
	3.4.3.2 Find by Type Value Request, Find by Type Value Response
	3.4.3.3 Read by Type Request, Read by Type Response
	3.4.3.4 Find Information Request, Find Information Response
	3.4.3.5 Read Request, Read Response
	3.4.3.6 Read Blob Request, Read Blob Response
	3.4.3.7 Exchange MTU Request, Exchange MTU Response
	3.4.3.8 Write Request, Write Response
	3.4.3.9 Write Command
	3.4.3.10 Handle Value Notification
	3.4.3.11 Handle Value Indication
	3.4.3.12 Handle Value Confirmation

	3.5 SMP
	3.5.1 SMP Parameter Configuration
	3.5.1.1 Device Bonding
	3.5.1.2 Device OOB data verification
	3.5.1.3 Secure Connection Pairing (SC)

	3.5.2 Enable SMP
	3.5.3 SMP Event
	3.5.3.1 BLT_EV_FLAG_PAIRING_BEGIN
	3.5.3.2 BLT_EV_FLAG_PAIRING_END

	3.5.4 SMP Bonding Information

	4. Power Management (PM)
	4.1 PM Driver
	4.1.1 Low Power Modes
	4.1.2 Hardware Wakeup Sources
	4.1.3 Low Power Mode Entry and Wakeup

	4.2 BLE Low Power Management
	4.2.1 PM In Idle State
	4.2.2 PM in BLE Adv State & Conn State

	4.3 BLE PM Configuration
	4.3.1 PM Module Initialization
	4.3.2 Set Low Power Modes via “bls_pm_setSuspendMask”
	4.3.3 bls_pm_setWakeupSource
	4.3.4 Working Mechanism of Low Power Managment

	4.4 “latency_use” Configuration and Calculation
	4.5 Other APIs
	4.5.1 bls_pm_getSystemWakeupTick
	4.5.2 bls_pm_enableAdvMcuStall

	4.6 Notes about GPIO Wakeup
	4.6.1 Fail to Enter Suspend/Deepsleep When Wakeup Level is Valid

	4.7 BLE System PM Reference
	4.8 Timer Wakeup of APP Layer

	5. Low Battery Detect
	5.1 Significance of Low Battery Detect
	5.2 Implementation of Low Battery Detect
	5.2.1 Cautions of Low Battery Detect
	5.2.1.1 MUST Use GPIO Input Channel
	5.2.1.2 MUST Use ADC Differential Mode
	5.2.1.3 MUST Use DFIFO for ADC Sampling Valu

	5.2.2 Dedicated Low Battery Detect Demo
	5.2.2.1 Initialization of Low Battery Detect
	5.2.2.2 Low Battery Detect Processing
	5.2.2.3 Low Battery Voltage Alarm

	6. OTA
	6.1 Flash Architecture and OTA Procedure
	6.1.1 Flash Storage Architecture
	6.1.2 OTA Update Procedure
	6.1.3 Modify Firmware Size and Boot Address

	6.2 RF Data Proceesing in OTA Mode
	6.2.1 OTA Processing in Attribute Table on Slave Side
	6.2.2 OTA Data Packet Format
	6.2.3 RF Transfer Processing on Master Side
	6.2.4 RF Receive Processing on Slave Side

	7. Key Scan
	7.1 Key Matrix
	7.2 Keyscan, Keymap and Keycode
	7.2.1 Keyscan
	7.2.2 Keymap &kb_event

	7.3 Keycode
	7.4 Keyscan Flow
	7.4.1 Basic Keyscan Flow
	7.4.2 Keyscan Flow Timing Optimization

	7.5 Deepsleep Wakeup Fast Keyscan
	7.6 Repeat Key Processing
	7.7 Stuck Key Processing
	7.8 Power Optimization for Long Key Press

	8. LED Management
	8.1 LED Task Related Functions
	8.2 LED Task Configuration and Management
	8.2.1 LED Event Definition
	8.2.2 LED Event Priority

	9. blt Software Timer
	9.1 Timer Initialization
	9.2 Timer Inquiry Processing
	9.3 Add Timer Task
	9.4 Delete Timer Task
	9.5 Demo

	10. IR
	10.1 PWM Driver
	10.1.1 PWM id and Pin
	10.1.2 PWM Clock
	10.1.3 PWM Cycle and Duty
	10.1.4 PWM Revert
	10.1.5 PWM Start and Stop
	10.1.6 PWM Mode
	10.1.7 PWM Pulse Number
	10.1.8 PWM Phase
	10.1.9 PWM Interrupt
	10.1.10 API for IR DMA FIFO Mode
	10.1.10.1 Configuration of DMA FIFO
	10.1.10.2 Set DMA FIFO Buffer
	10.1.10.3 Start and Stop of IR DMA FIFO Mode

	10.2 IR Demo
	10.2.1 PWM Mode Selection
	10.2.2 Demo IR protocol
	10.2.3 IR Timing Design
	10.2.4 IR Initialization
	10.2.4.1 rc_ir_init
	10.2.4.2 IR Hardware Configuration
	10.2.4.3 IR Variable Initialization

	10.2.5 FIFO Task Configuration
	10.2.5.1 FIFO Task_data
	10.2.5.2 FifoTask_idle
	10.2.5.3 FifoTask_repeat
	10.2.5.4 FifoTask_repeat*n&FifoTask_idle_repeat*n

	10.2.6 Check IR Busy Status in APP Layer

	11. Drivers in BLE SDK
	11.1 External Capacitor for 24 MHz Crystal
	11.2 Select 32kHz Clock Sources
	11.3 EMI
	11.3.1 EMI Test
	11.3.1.1 Carrier Mode
	11.3.1.2 CD Mode
	11.3.1.3 TX Mode
	11.3.1.4 RX Mode

	11.3.2 EMI Test Tool

	11.4 PHY Test

	12. BLE SPP Module
	12.1 Command and Data Packet Format
	12.2 Function Description
	12.2.1 Module Sends Commands and Data
	12.2.2 Module Receives Data

	12.3 Power Management of Module

	Appendix
	Appendix 1: crc16 Algorithm

